VaPiD: A Rapid Vanishing Point Detector via Learned Optimizers
ICCV 2021
Shichen Liu1,2    Yichao Zhou3    Yajie Zhao2   
University of Southern California1    USC Institute for Creative Technologies2    University of California, Berkeley3   

Being able to infer 3D structures from 2D images with geometric principles, vanishing points have been a wellrecognized concept in 3D vision research. It has been widely used in autonomous driving, SLAM, and AR/VR for applications including road direction estimation, camera calibration, and camera pose estimation. Existing vanishing point detection methods often need to trade off between robustness, precision, and inference speed. In this paper, we introduce VaPiD, a novel neural network-based rapid Vanishing Point Detector that achieves unprecedented efficiency with learned vanishing point optimizers. The core of our method contains two components: a vanishing point proposal network that gives a set of vanishing point proposals as coarse estimations; and a neural vanishing point optimizer that iteratively optimizes the positions of the vanishing point proposals to achieve high-precision levels. Extensive experiments on both synthetic and real-world datasets show that our method provides competitive, if not better, performance as compared to the previous state-of-the-art vanishing point detection approaches, while being significantly faster.

The architecture of our proposed VaPiD. It incorporates three major components: (1) a backbone network for feature extraction from the input image; (2) a vanishing point proposal network (VPPN) to generate reliable vanishing point proposals with efficient conic convolutions; (3) a weight sharing neural vanishing point optimizer (NVPO) to refine each vanishing point proposal to achieve high accuracy. Note that our network is trained in an end-to-end fashion.

Vanishing points are defined as the intersection points of 3D parallel lines when projected onto a 2D image. By providing geometry-based cues to infer the 3D structures, they underpin a variety of applications, such as camera calibration [21, 7], facade detection [25], 3D reconstruction [15], 3D scene structure analysis [16, 39], 3D lifting of lines [30], SLAM [43], and autonomous driving [22].

Efforts have been made on vanishing point detection in the past decades. Traditionally, vanishing points are detected in two stages. In the first stage, a line detection algorithm, such as probabilistic hough transformation [18] or LSD [38], is used to extract a set of line segments. In the second stage, a line clustering algorithm [26] or a voting procedure [3] is used to estimate the final positions of vanishing points from detected line segments. The main weakness of this pipeline is that the extracted lines might be noisy, leading to spurious results after clustering or voting when there are too many outliers. To make algorithms more robust, priors of the underlying scenes can be used, such as Manhattan worlds [4] or Atlanta worlds [31], which are common in man-made environments. Nevertheless, additional assumptions complicate the problem setting, and the algorithms might not work well when these hard assumptions do not hold.

Recent CNN-based deep learning approaches [6, 5, 42, 41, 19, 45] have demonstrated the robustness of the datadriven approach. In particular, NeurVPS [45] provides a framework to detect vanishing points in an end-to-end fashion without relying on external heuristic line detectors. It proposes conic convolution to exploit the geometric properties of vanishing points by enforcing the feature extraction and aggregation along the structural lines of vanishing point candidates. This approach achieves satisfactory performance, but it is inefficient as it requires evaluating all possible vanishing points in an image (1FPS is reported in [45]). In contrast, most vanishing point applications must be run online in order to be useful in a practical setting.

To this end, we introduce VaPiD, a novel end-to-end rapid vanishing point detector that significantly boosts the model efficiency using learned optimizers. VaPiD consists of two components: (1) a vanishing point proposal network (VPPN) that takes an image and returns a set of vanishing point proposals. It harnesses a computation sharing scheme to efficiently process dense vanishing point anchors; (2) a neural vanishing point optimizer (NVPO) that takes each proposal as input and optimizes for its position with a neural network in an iterative fashion. In each iteration, it refines the vanishing points by regressing the residuals and updating the estimates. Our approach can be considered as learning to optimize. Compared to the previous coarse-tofine method in [45], our optimizing scheme avoids enumerating all possible vanishing point candidate positions, which largely improves the inference speed.

We comprehensively evaluate our method on four public datasets including one synthetic dataset and three realworld datasets. VaPiD significantly outperforms previous works in terms of the efficiency, while achieving competitive, if not better, accuracy compared with the baselines. Remarkably, on the synthetic dataset, the cosine of the median angle error (0.088°) is close to the machine epsilon of 32-bit floating-point numbers1, which indicates that Va- PiD pushes the detection accuracy to the limit of numerical numbers. With fewer refinement iterations, VaPiD runs at 26 frames per second while maintaining a median angle error of 0.145° for 512x512 images with 3 vanishing points.

Qualitative comparison with baseline methods on SU3 Wireframe dataset [46]. Line group in the same color indicates the same vanishing point. We highlight all prediction errors in red color. Better view in color.
Results on RealWorld Datasets

Comparisons on Natural Scene. We show the comparisons on Natural Scene [47] in Tab. 2 and Fig. 7. Our method significantly outperforms the naive CNN classification and regression baselines as well as the contour-based clustering algorithm VPDet [47] in all metrics. It also outperforms the strong baseline NeurVPS [45] in most of the metrics. We note that the Natural Scene [47] is captured by cameras with different focal lengths. Such data favors the enumeration-based methods over the optimization-based methods, especially at a tighter angle threshold (i.e. below 1°). Nonetheless, we highlight that for images with one dominant vanishing point, VaPiD can run at real-time (43FPS) while maintaining competitive performance.


This paper presents a novel neural network-based vanishing points detection approach that achieves state-of-the-art performance while being significantly faster than previous works. Our method contains two designated modules: a novel vanishing points proposal network and a neural vanishing point optimizer. Our key insight is to use the computation sharing to accelerate massive convolution operations, and embrace a learning to optimize methodology that progressively learns the residual of the objectives. In future work, we will study how to combine VaPiD with downstream applications such as scene understanding, camera calibration, and camera pose estimation.

Footer With Address And Phones