
VaPiD: A Rapid Vanishing Point Detector via Learned Optimizers
– Supplementary Material

Shichen Liu1,2, Yichao Zhou3, and Yajie Zhao2

1University of Southern California
2USC Institute for Creative Technologies

3University of California, Berkeley
{lshichen,zhao}@ict.usc.edu zyc@berkeley.edu

We extend the discussions about the precision in van-
ishing point detection in Sec. 1, provide the details of our
network architectures in Sec. 2 and more implementation
details in Sec. 3, discuss more ablation studies in Sec. 4,
and show more results in Sec. 5.

1. Floating-Point Precision

Most common deep learning frameworks adopt single-
precision floating-point format (float32) for the values of
both the network parameters and the outputs. We evaluate
the position of a predicted vanishing point using the angle
error metric in the Gaussian sphere representation, which
can be computed by:

θerr = arccos(|〈v,v∗〉|), (1)

where v and v∗ are the Gaussian sphere representation of
the prediction and the ground truth vanishing points, respec-
tively. As θerr is close to 0, the dot product of the vanishing
point coordinates will be close to 1. We denote the ma-
chine epsilon of float32 as ε ≈ 1.19 × 10−7. The mini-
mum angular error that float32 is able to represent is thus
arccos(1− ε) ≈ 0.028°.

Different from previous method [2], in which each van-
ishing point candidate is enumerated in float64 and super-
vised with a classification loss, we directly supervise our
VaPiD with angular errors (in float32). Despite this natural
error metric is more sensitive to numerical error, VaPiD still
achieves a state-of-the-art median angle error of 0.089° in
the photorealistic dataset [3]. The trivial difference between
our results and the minimum angle error of float32 indicates
that the performance of our model is likely to be bounded
by the numerical error of float32 rather than the network
prediction accuracy.

2. Network Architectures
VPPN. The architecture of the VPPN is given in Fig. 1(a).
The VPPN contains an efficient conic convolution (ECC)
block that has 6 stacked ECC layers. The feature maps are
downsampled by 2 with each 3 layers. We rotate the kernels
in the whole ECC block K times and apply all of them to
the input feature maps. After obtaining K feature maps, we
index and aggregate the feature maps according to the an-
gles between the pixel coordinates and the vanishing point
anchors to obtain the anchor features. Finally, we use a sin-
gle fully connected layer with a Sigmoid activation function
over each anchor feature to estimate the confidence scores
of the anchors.

NVPO. We illustrate the structure of the NVPO in
Fig. 1(b). Our NVPO contains 6 conic convolution layers.
Different from NeurVPS [2] that flattens the feature maps
and employs a fully connected layer, we downsample the
feature maps with stride convolutions and employ a global
average pooling layer. This is because the spatial sensitive
operators such as flatten operator hinder the rotation invari-
ance, which is required by our update scheme. The final
output has 4×D channels. We apply a softmax function to
the first 2×D channels to find the scale of the output, which
gives a weight vector. The last 2×D channels are processed
with a tanh function to regress the estimates for each scale,
which gives an estimate vector. The weight vector and the
estimate vector are then utilized to provide a multi-scale es-
timate, which is described in the following paragraph.

Multi-scale Estimation. We use the standard tanh func-
tion as our activation function. We observe that there is a
significant precision gap between the initial guess (∼4.28°)
and our target precision (∼0.08°). Instead of using a sin-
gle tanh function, we extend it to multiple estimators in
different precision scales to focus the networks on the de-
sired scale of precision depending on the progress during

1

H/8 x W/8, 128 x K

Input
H/4 x W/4, 64

H/8 x W/8, 128 x K

H/8 x W/8, 128 x K

H/16 x W/16, 256 x K

H/16 x W/16, 256 x K

H/16 x W/16, 256 x K

Index and pooling
N x 256

Output
N x 1

H/8 x W/8, 64

Input
H/4 x W/4, 64

H/16 x W/16, 128

H/32 x W/32, 256

H/64 x W/64, 256

H/128 x W/128, 256

H/256 x W/256, 256

Fully connected

Wight vec.
2 x D

Fully connected

Global average pooling
256

Efficient conic conv Conic conv

(a) VPPN architecture (b) NVPO architecture

Estimate vec.
2 x D

PNMS
M x 1

Multi-scale estimate
2

Figure 1: The architectures of the VPPN and the NVPO.

AA.1° AA.5° AA2° Mean Median
NVPO-MSE 0.184 0.684 0.914 0.172 0.117
NVPO-SW 0.265 0.734 0.927 0.150 0.092
NVPO (full) 0.266 0.747 0.930 0.145 0.088

Table 1: More ablation studies. “NVPO-MSE” denotes our
method without multi-scale scheme. “NVPO-SW” shows
the ablation on shared weights for each updating iteration.

the inference. For an estimation cap S, we define the
different scales as an exponentially decreasing sequence
{S, Sγ, . . . , SγD−1}, where γ < 1 is the scale factor and

D is the number of scales. The prediction of the network is:

y =

D−1∑
i=0

S · γi · softmax(wi) · tanh(xi), (2)

where {wi}D and {xi}D are the weight vector and the esti-
mate vector predicted by the conic networks, respectively.

3. Implementation Details
Network Details. We implement our network in PyTorch.
Our VPPN makes use of an anchor grid of size 1,024 that is
generated using Fibonacci lattice algorithm:

φi = arccos(1− n/N), (3)

θi = (1 +
√

5)πn, (4)

where (φi, θi) are the spherical coordinates of the i-th van-
ishing point anchor. We use PNMS with Γ = 15° and keep
the top-K proposals if the dataset assumes a fixed number
of ground truths K, otherwise top-6. For the neural van-
ishing point optimizer, we set the multi-scale estimate cap
S = 20°, exponential decay rate γ = 0.7, and step size
D = 10. During training, we compute the loss for 8 itera-
tions.

Datasets. For the SU3 Wireframe dataset [3], we train the
model for 40 epochs with a learning rate decay of 0.1 at
the 30th epoch. We train our model for 160 epochs on the
Natural Scene dataset [4] with a learning rate decay of 0.1
at the 120th epoch. We also adopt horizontal flip data aug-
mentation as this dataset contains limited training examples.
Because the dataset does not provide ground truth camera
matrices, we simply set the focal length of all images to be
1. We train our model on the Holicity dataset [2] for 30
epochs with a learning rate decay of 0.1 at the 24th epoch.
For NYU-VP dataset [1], we keep the original image reso-
lution as 480×640. we train our model for 40 epochs with
a learning rate decay of 0.1 at the 30th epoch.

4. More ablation studies
Multi-scale Estimate. We provide the ablation study on
the multi-scale estimate in Tab. 1, where the NVPO-MSE is
a variant of our NVPO that replace the multi-scale estimate
with a naive Tanh function. We observe a significant im-
provement at high precision levels (e.g. 0.1°) by using the
proposed multi-scale estimator.

Shared Weight Optimizers. We notice that the weight
sharing scheme also improves the accuracy (NVPO-SW vs.
NVPO). We hypothesis that the weight sharing scheme can
serve as a regularizer that helps the network better converge
to a fixed point. It also enables the flexibility of references
with arbitrary steps.

(a) Input (c) NVPO T = 1(b) VPPN prediction (d) NVPO T = 2 (e) NVPO T = 4 (f) NVPO T = 8

Figure 2: Vanishing points prediction using our networks with intermediate results. (a) Input images. (b) results from
our VPPN. (c)-(f). different results by using different refinement steps (T = 1, 2, 4, 8) in NVPO taken the predictions in (b)
as initials.

5. Additional Qualitative Results

We provide more examples with intermediate results
visualized in Figure 2. We show the predictions from
our VPPN in Figure 2(b). The results demonstrate that
VPPN provides reliable initial guess of vanishing points
for NVPO. The different refinement steps (T = 1, 2, 4, 8)
used in NVPO are shown in Figure 2(c)-(f). We can observe
that NVPO gradually refines the vanishing point estimation
during the update. We also find that the visual difference be-
tween results of T = 4 and T = 8 is subtle, which indicates
that our NVPO converges rapidly and saturated at the step
of T = 8. Thus we pick T = 8 as the best time-accuracy
trade-off as described in the main paper.

References

[1] Florian Kluger, Eric Brachmann, Hanno Ackermann, Carsten
Rother, Michael Ying Yang, and Bodo Rosenhahn. Consac:
Robust multi-model fitting by conditional sample consensus.

In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 4634–4643, 2020. 2

[2] Yichao Zhou, Haozhi Qi, Jingwei Huang, and Yi Ma.
Neurvps: Neural vanishing point scanning via conic convolu-
tion. In Advances in Neural Information Processing Systems,
pages 866–875, 2019. 1, 2

[3] Yichao Zhou, Haozhi Qi, Yuexiang Zhai, Qi Sun, Zhili Chen,
Li-Yi Wei, and Yi Ma. Learning to reconstruct 3d manhattan
wireframes from a single image. In Proceedings of the IEEE
International Conference on Computer Vision, pages 7698–
7707, 2019. 1, 2

[4] Zihan Zhou, Farshid Farhat, and James Z Wang. Detecting
dominant vanishing points in natural scenes with application
to composition-sensitive image retrieval. IEEE Transactions
on Multimedia, 19(12):2651–2665, 2017. 2

