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ABSTRACT
We present a process for estimating spatially-varying surface re-
flectance of a complex scene observed under natural illumination
conditions. The process uses a laser-scanned model of the scene’s
geometry, a set of digital images viewing the scene’s surfaces under
a variety of natural illumination conditions, and a set of correspond-
ing measurements of the scene’s incident illumination in each pho-
tograph. The process then employs an iterative inverse global illu-
mination technique to compute surface colors for the scene which,
when rendered under the recorded illumination conditions, best re-
produce the scene’s appearance in the photographs. In our process
we measure BRDFs of representative surfaces in the scene to better
model the non-Lambertian surface reflectance. Our process uses a
novel lighting measurement apparatus to record the full dynamic
range of both sunlit and cloudy natural illumination conditions. We
employ Monte-Carlo global illumination, multiresolution geome-
try, and a texture atlas system to perform inverse global illumina-
tion on the scene. The result is a lighting-independent model of the
scene that can be re-illuminated under any form of lighting. We
demonstrate the process on a real-world archaeological site, show-
ing that the technique can produce novel illumination renderings
consistent with real photographs as well as reflectance properties
that are consistent with ground-truth reflectance measurements.

1 Introduction
Digitizing objects and environments from the real world has be-
come an important part of creating realistic computer graph-
ics. Capturing geometric models has become a common process
through the use of structured lighting, laser triangulation, and laser
time-of-flight measurements. Recent projects such as [Levoy et al.
2000; Rushmeier et al. 1998; Ikeuchi 2001] have shown that accu-
rate and detailed geometric models can be acquired of real-world
objects using these techniques.

To produce renderings of an object under changing lighting as
well as viewpoint, it is necessary to digitize not only the object’s
geometry but also its reflectance properties: how each point of the
object reflects light. Digitizing reflectance properties has proven to
be a complex problem, since these properties can vary across the

surface of an object, and since the reflectance properties of even
a single surface point can be complicated to express and measure.
Some of the best results that have been obtained [Rushmeier et al.
1998; Marschner 1998; Lensch et al. 2003] capture digital pho-
tographs of objects from a variety of viewing and illumination di-
rections, and from these measurements estimate reflectance model
parameters for each surface point.

Digitizing the reflectance properties of outdoor scenes can be
more complicated than for objects since it is more difficult to con-
trol the illumination and viewpoints of the surfaces. Surfaces are
most easily photographed from ground level rather than from a full
range of angles. During the daytime the illumination conditions
in an environment change continuously. Finally, outdoor scenes
generally exhibit significant mutual illumination between their sur-
faces, which must be accounted for in the reflectance estimation
process. Two recent pieces of work have made important inroads
into this problem. [Yu and Malik 1998] estimated spatially varying
reflectance properties of an outdoor building based on fitting obser-
vations of the incident illumination to a sky model, and [Yu et al.
1999] estimated reflectance properties of a room interior based on
known light source positions and using a finite element radiosity
technique to take surface interreflections into account.

In this paper, we describe a process that synthesizes previous re-
sults for digitizing geometry and reflectance and extends them to
the context of digitizing a complex real-world scene observed un-
der arbitrary natural illumination. The data we acquire includes a
geometric model of the scene obtained through laser scanning, a
set of photographs of the scene under various natural illumination
conditions, a corresponding set of measurements of the incident il-
lumination for each photograph, and finally, a small set of BRDF
measurements of representative surfaces within the scene. To esti-
mate the scene’s reflectance properties, we use a global illumina-
tion algorithm to render the model from each of the photographed
viewpoints as illuminated by the corresponding incident illumi-
nation measurements. We compare these renderings to the pho-
tographs, and then iteratively update the surface reflectance proper-
ties to best correspond to the scene’s appearance in the photographs.
Full BRDFs for the scene’s surfaces are inferred from the measured
BRDF samples. The result is a set of estimated reflectance prop-
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erties for each point in the scene that most closely generates the
scene’s appearance under all input illumination conditions.

While the process we describe leverages existing techniques, our
work includes several novel contributions. These include our inci-
dent illumination measurement process, which can measure the full
dynamic range of both sunlit and cloudy natural illumination con-
ditions, a hand-held BRDF measurement process suitable for use
in the field, and an iterative multiresolution inverse global illumi-
nation process capable of estimating surface reflectance properties
from multiple images for scenes with complex geometry seen under
complex incident illumination.

The scene we digitize is the Parthenon in Athens, Greece, done in
collaboration with the ongoing Acropolis Restoration project. Scaf-
folding and equipment around the structure prevented the applica-
tion of the process to the middle section of the temple, but we were
able to derive models and reflectance parameters for both the East
and West facades. We validated the accuracy of our results by com-
paring our reflectance measurements to ground truth measurements
of specific surfaces around the site, and we generate renderings of
the model under novel lighting that are consistent with real pho-
tographs of the site. At the end of the paper we discuss avenues for
future work to increase the generality of these techniques.

2 Background and Related Work
The process we present leverages previous results in 3D scanning,
reflectance modeling, lighting recovery, and reflectometry of ob-
jects and environments. Techniques for building 3D models from
multiple range scans generally involve first aligning the scans to
each other [Besl and McKay 1992; Chen and Medioni 1992], and
then combining the scans into a consistent geometric model by ei-
ther ”zippering” the overlapping meshes [Turk and Levoy 1994] or
using volumetric merging [Curless and Levoy 1996] to create a new
geometric mesh that optimizes its proximity to all of the available
scans.

In its simplest form, a point’s reflectance properties can be ex-
pressed in terms of its Lambertian surface color - usually an RGB
triplet expressing the point’s red, green, and blue reflectance prop-
erties. More complex reflectance models can include parametric
models of specular and retroflective components; some commonly
used models are [Larson 1992; Oren and Nayar 1994; Lafortune
et al. 1997]. More generally, a point’s reflectance can be charac-
terized in terms of its Bi-directional Reflectance Distribution Func-
tion (BRDF) [Nicodemus et al. 1977], which is a 4D function that
characterizes for each incident illumination direction the complete
distribution of reflected illumination. [Marschner et al. 1999] pro-
posed an efficient method for measuring a material’s BRDFs if a
convex homogeneous sample is available. Recent work has pro-
posed models which also consider scattering of illumination within
translucent materials [Jensen et al. 2001].

To estimate a scene’s reflectance properties, we use an inci-
dent illumination measurement process. [Marschner and Greenberg
1997] recovered low-resolution incident illumination conditions by
observing an object with known geometry and reflectance proper-
ties. [Sato et al. 1999] estimated incident illumination conditions
by observing the shadows cast from objects with known geometry.
[Debevec 1998] acquired high resolution lighting environments by
taking high dynamic range images [Debevec and Malik 1997] of
a mirrored sphere, but did not recover natural illumination envi-
ronments where the sun was directly visible. We combine ideas
from Debevec:1998:RSO, and [Marschner and Greenberg 1997] to
record high-resolution incident illumination conditions in cloudy,
partly cloudy, and sunlit environments.

Considerable recent work has presented techniques to measure
spatially-varying reflectance properties of objects. [Marschner
1998] used photographs of a 3D scanned object taken under point-

light source illumination to estimate its spatially varying diffuse
albedo. This work used a texture atlas system to store the surface
colors of arbitrarily complex geometry, which we also perform in
our work. The work assumed that the object was Lambertian, and
only considered local reflections of the illumination. [Sato et al.
1997] used a similar sort of dataset to compute a spatially-varying
diffuse component and a sparsely sampled specular component of
an object. [Rushmeier et al. 1998] used a photometric stereo tech-
nique (e.g. [Ikeuchi and Horn 1979; Nayar et al. 1994]) to estimate
spatially varying Lambertian color as well as improved surface nor-
mals for the geometry. [Rocchini et al. 2002] used this technique to
compute diffuse texture maps for 3D scanned objects from multiple
images. [Debevec et al. 2000] used a dense set of illumination di-
rections to estimate spatially-varying diffuse and specular parame-
ters and surface normals. [Lensch et al. 2003] presents an advanced
technique for recovering spatially-varying BRDFs of real-world ob-
jects, performing principal component analysis of relatively sparse
lighting and viewing directions to cluster the object’s surfaces into
patches of similar reflectance. In this way, many reflectance ob-
servations of the object as a whole are used to estimate spatially-
varying BRDF models for surfaces seen from limited viewing and
lighting directions. Our reflectance modeling technique is less gen-
eral, but adapts ideas from this work to estimate spatially-varying
non-Lambertian reflectance properties of outdoor scenes observed
under natural illumination conditions, and we also account for mu-
tual illumination.

Capturing the reflectance properties of surfaces in large-scale en-
vironments can be more complex, since it can be harder to con-
trol the lighting conditions on the surfaces and the viewpoints from
which they are photographed. [Yu and Malik 1998] solved for the
reflectance properties of a polygonal model of an outdoor scene
modeled with photogrammetry. The technique used photographs
taken under clear sky conditions, fitting a small number of radi-
ance measurements to a parameterized sky model. The process es-
timated spatially varying diffuse and piecewise constant specular
parameters, but did not consider retroreflective components. The
process derived twopseudo-BRDFsfor each surface, one accord-
ing to its reflectance of light from the sun and one according to its
reflectance of light from the sky and environment. This allowed
more general spectral modeling but required every surface to be
observed under direct sunlight in at least one photograph, which
we do not require. Using room interiors, [Yu et al. 1999; Loscos
et al. 1999; Boivin and Gagalowicz 2002] estimate spatially vary-
ing diffuse and piecewise constant specular parameters using in-
verse global illumination. The techniques used knowledge of the
position and intensity of the scene’s light sources, using global illu-
mination to account for the mutual illumination between the scene’s
surfaces. Our work combines and extends aspects of each of these
techniques: we use pictures of our scene under natural illumina-
tion conditions, but we image the illumination directly in order to
use photographs taken in sunny, partly sunny, or cloudy conditions.
We infer non-Lambertian reflectance from sampled surface BRDFs.
We do not consider full-spectral reflectance, but have found RGB
imaging to be sufficiently accurate for the natural illumination and
reflectance properties recorded in this work. We provide compar-
isons to ground truth reflectance for several surfaces within the
scene. Finally, we use a more general Monte-Carlo global illumi-
nation algorithm to perform our inverse rendering, and we employ
a multiresolution geometry technique to efficiently process a com-
plex laser-scanned model.

3 Data Acquisiton and Calibration

3.1 Camera Calibration
In this work we used a Canon EOS D30 and a Canon EOS 1Ds
digital camera, which were calibrated geometrically and radiomet-
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rically. For geometric calibration, we used the Camera Calibra-
tion Toolbox for Matlab [Bouguet 2002] which uses techniques
from [Zhang 2000]. Since changing the focus of a lens usually
changes its focal length, we calibrated our lenses at chosen fixed
focal lengths. The main lens used for photographing the environ-
ment was a 24mm lens focussed at infinity. Since a small calibra-
tion object held near this lens would be out of focus, we built a
larger calibration object 1.2m× 2.1m from an aluminum honey-
comb panel with a 5cm square checkerboard pattern applied (Fig.
2(a)). Though nearly all images were acquired at f/8 aperture, we
verified that the camera intrinsic parameters varied insignificantly
(less than 0.05%) with changes of f/stop from f/2.8 to f/22.

In this work we wished to obtain radiometrically linear pixel
values that would be consistent for images taken with different
cameras, lenses, shutter speeds, and f/stops. We verified that the
”RAW” 12-bit data from the cameras was linear using three meth-
ods: we photographed a gray scale calibration chart, we used the ra-
diometric self-calibration technique of [Debevec and Malik 1997],
and we verified that pixel values were proportional to exposure
times for a static scene. From this we found that the RAW pixel
values exhibited linear response to within 0.1% for values up to
3000 out of 4095, after which saturation appeared to reduce pixel
sensitivity. We ignored values outside of this linear range, and we
used multiple exposures to increase the effective dynamic range of
the camera when necessary.
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Figure 2: (a) 1.2m×2.1m geometric calibration object(b) Lens
falloff measurements for 24mm lens at f/8(c) Lens falloff curve
for (b)

Most lenses exhibit a radial intensity falloff, producing dimmer
pixel values at the periphery of the image. We mounted each cam-
era on a Kaidan nodal rotation head and photographed a diffuse
disk light source at an array of positions for each lens at each f/stop
used for data capture (Fig. 2(b)). From these intensities recorded at
different image points, we fit a radially symmetric 6th-order even
polynomial to model the falloff curve and produce a flat-field re-
sponse function, normalized to unit response at the image center.

The digital cameras used each had minor variations in sensitivity
and color response. We calibrated these variations by photograph-
ing a MacBeth color checker chart under natural illumination with
each camera, lens, and f/stop combination, and solved for the best
3×3 color matrix to convert each image into the same color space.
Finally we used a utility for converting RAW images to floating-
point images using the EXIF metadata for camera model, lens, ISO,
f/stop, and shutter speed to apply the appropriate radiometric scal-
ing factors and matrices. These images were organized in a Post-
GreSQL database for convenient access.

3.2 BRDF Measurement and Modeling
In this work we measure BRDFs of a set of representative sur-
face samples, which we use to form the most plausible BRDFs for
the rest of the scene. Our relatively simple technique is motivated
by the principal component analyses of reflectance properties used
in [Lensch et al. 2003] and [Matusik et al. 2003], except that we
choose our basis BRDFs manually. Choosing the principal BRDFs
in this way meant that BRDF data collected under controlled illu-
mination could be taken for a small area of the site, while the large-
scale scene could be photographed under a limited set of natural

illumination conditions.

3.2.1 Data Collection and Registration

The site used in this work is composed entirely of marble, but
its surfaces have been subject to different discoloration processes
yielding significant reflectance variations. We located an accessible
30cm× 30cm surface that exhibited a range of coloration properties
representative of the site. Since measuring the reflectance proper-
ties of this surface required controlled illumination conditions, we
performed these measurements during our limited nighttime access
to the site and used a BRDF measurement technique that could be
executed quickly.

Figure 3:BRDF Samplesare measured from a 30cm square region
exhibiting a representative set of surface reflectance properties. The
technique used a hand-held light source and camera and a calibra-
tion frame to acquire the BRDF data quickly.

The BRDF measurement setup (Fig. 3), includes a hand-held
light source and camera, and uses a frame placed around the sample
area that allows the lighting and viewing directions to be estimated
from the images taken with the camera. The frame contains fiducial
markers at each corner of the frame’s aperture from which the cam-
era’s position can be estimated, and two glossy black plastic spheres
used to determine the 3D position of the light source. Finally, the
device includes a diffuse white reflectance standard parallel to the
sample area for determining the intensity of the light source.

The light source chosen was a 1000W halogen source mounted
in a small diffuser box, held approximately 3m from the surface.
Our capture assumed that the surfaces exhibited isotropic reflec-
tion, requiring the light source to be moved only within a single
plane of incidence. We placed the light source in four consecutive
positions of 0◦, 30◦, 50◦, 75◦, and for each took hand-held pho-
tographs at a distance of approximately 2m from twenty directions
distributed on the incident hemisphere, taking care to sample the
specular and retroreflective directions with a greater number of ob-
servations. Dark clothing was worn to reduce stray illumination
on the sample. The full capture process involving 83 photographs
required forty minutes.

3.2.2 Data Analysis and Reflectance Model Fitting

To calculate the viewing and lighting directions, we first determined
the position of the camera from the known 3D positions of the four
fiducial markers using photogrammetry. With the camera positions
known, we computed the positions of the two spheres by tracing
rays from the camera centers through the sphere centers for several
photographs, and calculated the intersection points of these rays.
With the sphere positions known, we determined each light position
by shooting rays toward the center of the light’s reflection in the
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spheres. Reflecting the rays off the spheres, we find the center of
the light source position where the two rays most nearly intersect.
Similar techniques to derive light source positions have been used
in [Masselus et al. 2002; Lensch et al. 2003].

From the diffuse white reflectance standard, the incoming light
source intensity for each image could be determined. By dividing
the overall image intensity by the color of the reflectance standard,
all images were normalized by the incoming light source intensity.
We then chose three different areas within the sampling region best
corresponding to the different reflectance properties of the large-
scale scene. These properties included a light tan area that is the
dominant color of the site’s surfaces, a brown color corresponding
to encrusted biological material, and a black color representative
of soot deposits. To track each of these sampling areas across the
dataset, we applied a homography to each image to map them to
a consistent orthographic viewpoint. For each sampling area, we
then obtained a BRDF sample by selecting a 30x30 pixel region
and computing the average RGB value. Had there been a greater
variety of reflectance properties in the sample, a PCA analysis of
the entire sample area as in [Lensch et al. 2003] could have been
used.

To extrapolate the BRDF samples to a complete BRDF, we fit the
BRDF to the Lafortune cosine lobe model (Eq. 1) in its isotropic
form with three lobes for the Lambertian, specular, and retroreflec-
tive components. As suggested in [Lafortune et al. 1997], we then
use a non-linear Levenberg-Marquardt optimization algorithm to
determine the parameters of the model from our measured data. We
first estimate the Lambertian componentρd, and then fit a retrore-
flective and a specular lobe separately before optimizing all the pa-
rameters in a single system. The resulting BRDFs (Fig. 5(b), back
row) show mostly Lambertian reflectance with noticeable retrore-
flection and rough specular components at glancing angles. The
brown area exhibited the greatest specular reflection, while the
black area was the most retroreflective.

f (−→u ,−→v ) = ρd +∑
i
[Cxy,i(uxvx +uyvy)+Cz,iuzvz]Ni (1)

1 0.5 0 0.5 1

θ  = 0°

1 0.5 0 0.5 1

θ  = 30°

1 0.5 0 0.5 1

θ  = 50°

1.5 1 0.5 0 0.5 1

θ  = 75°

Figure 4: BRDF Data and Fitted Reflectance Lobesare shown
for the RGB colors of the tan material sample for the four incident
illumination directions. Only measurements within 15◦ of in-plane
are plotted.

3.2.3 BRDF Inference

We wish to be able to make maximal use of the BRDF information
obtained from our material samples in estimating the reflectance
properties of the rest of the scene. The approach we take is in-
formed by the BRDF basis construction technique from [Lensch
et al. 2003], the data-driven reflectance model presented in [Ma-
tusik et al. 2003], and spatially-varying BRDF construction tech-

nique used in [Marschner et al. 2000]. Because the surfaces of the
rest of the scene will often be seen in relatively few photographs
under relatively diffuse illumination, the most reliable observation
of a surface’s reflectance is its Lambertian color. Thus, we form our
problem as one of inferring the most plausible BRDF for a surface
point given its Lambertian color and the BRDF samples available.

We first perform a principal component analysis of the Lamber-
tian colors of the BRDF samples available. For RGB images, the
number of significant eigenvalues will be at most three, and for our
samples the first eigenvalue dominates, corresponding to a color
vector of (0.688, 0.573, 0.445). We project the Lambertian color
of each of our sample BRDFs onto the 1D subspaceS (Fig. 5(a)
formed by this eigenvector. To construct a plausible BRDFf for
a surface having a Lambertian colorρd, we projectρd onto S to
obtain the projected colorρ′d. We then determine the two BRDF
samples whose Lambertian components project most closely toρ′d.
We form a new BRDFf ′ by linearly interpolating the Lafortune
parameters(Cxy,Cz,N) of the specular and retroreflective lobes of
these two nearest BRDFsf0 and f1 based on distance. Finally, since
the retroflective color of a surface usually corresponds closely to its
Lambertian color, we adjust the color of the retroflective lobe to cor-
respond to the actual Lambertian colorρd rather than the projected
color ρ′d. We do this by dividing the retroreflective parametersCxy

andCz by (ρ′d)1/N and then multiplying by(ρd)1/N for each color
channel, which effectively scales the retroreflective lobe to best cor-
respond to the Lambertian colorρd. Fig. 5(b) shows a rendering
with several BRDFs inferred from new Lambertian colors with this
process.
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Figure 5: (a) Inferring a BRDF based on its Lambertian compo-
nentρd (b) Rendered spheres with measured and inferred BRDFs.
Back row: the measured black, brown, and tan surfaces. Middle
row: intermediate BRDFs along the subspaceS. Front row: in-
ferred BRDFs for materials with Lambertian colors not onS.

3.3 Natural Illumination Capture
Each time a photograph of the site was taken, we used a device to
record the corresponding incident illumination within the environ-
ment. The lighting capture device was a digital camera aimed at
three spheres: one mirrored, one shiny black, and one diffuse gray.
We placed the device in a nearby accessible location far enough
from the principal structure to obtain an unshadowed view of the
sky, and close enough to ensure that the captured lighting would be
sufficiently similar to that incident upon the structure. Measuring
the incident illumination directly and quickly enabled us to make
use of photographs taken under a wide range of weather including
sunny, cloudy, and partially cloudy conditions, and also in changing
conditions.

3.3.1 Apparatus Design

The lighting capture device is designed to measure the color and
intensity of each direction in the upper hemisphere. A challenge in
capturing such data for a natural illumination environment is that
the sun’s intensity can exceed that of the sky by over five orders of
magnitude, which is significantly beyond the range of most digital
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(a) (b)
Figure 6: (a) The incident illumination measurement device at its
chosen location on the site (b) An incident illumination dataset.

image sensors. This dynamic range surpassing 17 stops also ex-
ceeds that which can conveniently be captured using high dynamic
range capture techniques. Our solution was to take a limited dy-
namic range photograph and use the mirrored sphere to image the
sky and clouds, the shiny black sphere to indicate the position of
the sun (if visible), and the diffuse grey sphere to indirectly mea-
sure the intensity of the sun. We placed all three spheres on a board
so that they could be photographed simultaneously (Fig. 6). We
painted the majority of the board gray to allow a correct exposure
of the device to be derived from the camera’s auto-exposure func-
tion, but surrounded the diffuse sphere by black paint to minimize
the indirect light it received. We also included a sundial near the
top of the board to validate the lighting directions estimated from
the black sphere. Finally, we placed four fiducial markers on the
board to estimate the camera’s relative position to the device.

We used a Canon D30 camera with a resolution of 2174× 1446
pixels to capture images of the device. Since the site photogra-
phy took place up to 300m from the incident illumination measure-
ment station, we used a radio transmitter to trigger the device at
the appropriate times. Though the technique we describe can work
with a single image of the device, we set the camera’s internal auto-
exposure bracketing function to take three exposures for each shut-
ter release at -2, +0, and +2 stops. This allowed somewhat higher
dynamic range to better image brighter clouds near the sun, and to
guard against any problems with the camera’s automatic light me-
tering.

3.3.2 Sphere Reflectance Calibration

To achieve accurate results, we calibrated the reflectance proper-
ties of the spheres. The diffuse sphere was painted with flat gray
primer paint, which we measured as having a reflectivity of (0.30,
0.31, 0.32) in the red, green, and blue color channels. We further
verified it to be nearly spectrally flat using a spectroradiometer. We
also exposed the paint to several days of sunlight to verify its color
stability. In the above calculations, we divide all pixel values by
the sphere’s reflectance, producing values that would result from a
perfectly reflective white sphere.

We also measured the reflectivity of the mirrored sphere, which
was made of polished steel. We measured this reflectance by using
a robotic arm to rotate a rectangular light source in a circle around
the sphere and taking a long-exposure photograph of the resulting
reflection (Fig. 7(a)). We found that the sphere was 52% reflec-
tive at normal incidence, becoming more reflective toward grazing
angles due to Fresnel reflection (Fig. 7(b)). From the measured
reflectance data we used a nonlinear optimization to fit a Fres-
nel curve to the data, arriving at a complex index of refraction of
(2.40+2.98i,2.40+3.02i,2.40+3.02i) for the red, green, and blue
channels of the sphere.

Light from a clear sky can be significantly polarized, particularly
in directions perpendicular to the direction of the sun. In our work
we assume that the surfaces in our scene are not highly specular,
which makes it reasonable for us to disregard the polarization of the
incident illumination in our reflectometry process. However, since
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(a) (b)
Figure 7: (a) Mirrored sphere photographed under an even ring of
light, showing an increase in brightness at extreme grazing angles
(the dark gap in the center is due to light source occluding the cam-
era). (b) Fitted Fresnel reflectance curves.

Fresnel reflection is affected by the polarization of the incoming
light, the clear sky may reflect either more or less brightly toward
the grazing angles of the mirrored sphere than it should if it were
photographed directly. To quantify this potential error, we pho-
tographed several clear skies reflected in the mirrored sphere and
at the same time took hemispherical panoramas with a 24mm lens.
Comparing the two, we found an RMS error of 5% in sky intensity
between the sky photographed directly and the sky photographed as
reflected in the mirrored sphere (Fig. 8). In most situations, how-
ever, unpolarized light from the sun, clouds, and neighboring sur-
faces dominates the incident illumination on surfaces, which min-
imizes the effect of this error. In Section 6, we suggest techniques
for eliminating this error through improved optics.

(a) (b)
Figure 8: (a) Sky photographed as reflected in a mirrored sphere
(b) Stitched sky panorama from 16 24mm photographs, showing
slightly different reflected illumination due to sky polarization.

3.3.3 Image Processing and Deriving Sun Intensity

To process these images, we assemble each set of three bracketed
images into a single higher dynamic range image, and derive the
relative camera position from the fiducial markers. The fiducial
markers are indicated manually in the first image of each day and
then tracked automatically through the rest of day, compensating
for small motions due to wind. Then, the reflections in both the
mirrored and shiny black spheres are transformed to 512× 512
images of the upper hemisphere. This is done by forward-tracing
rays from the camera to the spheres (whose positions are known)
and reflecting the rays into the sky, noting for each sky point the
corresponding location on the sphere. The image of the diffuse
sphere is also mapped to the sky’s upper hemisphere, but based on
the sphere’s normals rather the reflection vectors. In the process, we
also adjust for the reflectance properties of the spheres as described
in Section 3.3.2, creating the images that would have been produced
by spheres with unit albedo. Examples of these unwarped images
are shown in Fig. 9.

If the sun is below the horizon or occluded by clouds, no pixels
in the mirrored sphere image will be saturated and it can be used di-
rectly as the image of the incident illumination. We can validate the
accuracy of this incident illumination map by rendering a synthetic
diffuse imageD′ with this lighting and checking that it is consistent

5



USC ICT Technical Report ICT-TR-06.2004

(a) (b) (c)
Figure 9: Sphere images unwarped to the upper hemisphere for the
(a) Mirrored sphere (b) Shiny black sphere (c) Diffuse sphereD.
Saturated pixels are shown in black.

with the appearance of the actual diffuse sphere imageD. As de-
scribed in [Miller and Hoffman 1984], this lighting operation can
be performed using a diffuse convolution filter on the incident light-
ing environment. For our data, the root mean square illumination
error for our diffuse sphere images agreed to within 2% percent for
a variety of environments.

When the sun is visible, it usually saturates a small region of pix-
els in the mirrored sphere image. Since the sun’s bright intensity is
not properly recorded in this region, performing a diffuse convo-
lution of the mirrored sphere image will produce a darker image
than actual appearance of the diffuse sphere (CompareD′ to D in
Fig. 10). In this case, we reconstruct the illumination from the sun
as follows. We first measure the direction of the sun as the cen-
ter of the brightest spot reflected in the shiny black sphere (with its
darker reflection, the black sphere exhibits the most sharply defined
image of the sun.) We then render an image of a diffuse sphereD?

lit from this direction of illumination, using a unit-radiance infinite
light source 0.53 degrees in diameter to match the subtended angle
of the real sun. Such a rendering can be seen in the center of Figure
10.

+ α =

D′ D? D
Figure 10: Solving for sun intensityα based on the appearance of
the diffuse sphereD and the convolved mirrored sphereD′.

We can then write that the appearance of the real diffuse sphere
D should equal the sphere lit by the light captured in the mirrored
sphereD′ plus an unknown factorα times the sphere illuminated
by the unit sunD?, i.e.

D′+αD? = D

Since there are many pixels in the sphere images, this system
is overdetermined, and we compute the red, green, and blue com-
ponents ofα using least squares asαD? ≈ D−D′. SinceD? was
rendered using a unit radiance sun,α indicates the radiance of the
sun disk for each channel. For efficiency, we keep the solar illu-
mination modeled as the directional disk light source, rather than
updating the mirrored sphere imageM to include this illumination.
As a result, when we create renderings with the measured illumina-
tion, the solar component is more efficiently simulated as a direct
light source.

We note that this process does not reconstruct correct values for
the remaining saturated pixels near the sun; the missing illumina-
tion from these regions is effectively added to the sun’s intensity.
Also, if the sun is partially obscured by a cloud, the center of the
saturated region might not correspond precisely to the center of the

sun. However, for our data the saturated region has been sufficiently
small that this error has not been significant. Fig. 11 shows a light-
ing capture dataset and a comparison rendering of a model of the
capture apparatus, showing consistent captured illumination.

(a) (b)
Figure 11: (a) Real photograph of the lighting capture device(b)
Synthetic rendering of a 3D model of the lighting capture device to
validate the lighting measurements.

3.4 3D Scanning
To obtain 3D geometry for the scene, we used a time-of-flight
panoramic range scanner manufactured by Quantapoint, Inc, which
uses a 950nm infrared laser measurement component [Hancock
et al. 1998]. In high resolution mode, the scanner acquires scans
of 18,000 by 3,000 3D points in 8 minutes, with a maximum scan-
ning range of 40m and a field of view of 360 degrees horizontal
by 74.5 degrees vertical. Some scans from within the structure
were scanned in low-resolution, acquiring one-quarter the number
of points. The data returned is an array of (x,y,z) points as well as a
16-bit monochrome image of the infrared intensity returned to the
sensor for each measurement. Depending on the strength of the re-
turn, the depth accuracy varied between 0.5cm and 3cm. Over five
days, 120 scans were acquired in around the site, of which 53 were
used to produce the model in this paper.

Figure 12: Range measurements, shaded according to depth (top),
and infrared intensity return (bottom) for one of 53 panoramic laser
scans used to create the model. A fiducial marker appears at right.

3.4.1 Scan Processing

Our scan processing followed the traditional process of alignment,
merging, and decimation. Scans from outside the structure were
initially aligned during the scanning process through the use of
checkerboard fiducial markers placed within the scene. After the
site survey, the scans were further aligned using an iterative closest
point (ICP) algorithm [Besl and McKay 1992; Chen and Medioni
1992] implemented in the CNR-Pisa 3D scanning toolkit [Callieri
et al. 2003]. To speed the alignment process, three or more sub-
sections of each scan corresponding to particular scene areas were
cropped out and used to determine the alignment for the entire scan.

For merging, the principal structure of the site was partitioned
into an 8×17×5 lattice of voxels 4.3 meters on a side. For conve-
nience, the grid was chosen to align with the principal architectural
features of the site. The scan data within each voxel was merged
by a volumetric merging algorithm [Curless and Levoy 1996] also
from the CNR-Pisa toolkit using a volumetric resolution of 1.2cm.
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Finally, the geometry of a 200m×200marea of surrounding terrain
was merged as a single mesh with a resolution of 40cm.

Several of the merged voxels contained holes due to occlusions
or poor laser return from dark surfaces. Since such geometric
inconsistencies would affect the reflectometry process, they were
filled using semi-automatic tools with Geometry Systems, Inc. GSI
Studio software (Fig. 13).

(a) (b)
Figure 13: (a) Geometry for a voxel colored according to texture
atlas regions (b) The corresponding texture atlas.

Our reflectometry technique determines surface reflectance
properties which are stored in texture maps. We used a texture at-
las generator [Graphite 2003] based on techniques in [Lévy et al.
2002] to generate a 512×512 texture map for each voxel. Then, a
low-resolution version of each voxel was created using the Qslim
software [QSlim 1999] based on techniques in [Garland and Heck-
bert 1998]. This algorithm was chosen since it preserves edge poly-
gons, allowing low resolution and high resolution voxels to connect
without seams, and since it preserves the texture mapping space,
allowing the same texture map to be used for either the high or low
resolution geometry.

Figure 14: Complete model assembled from the 3D scanning
data, including low-resolution geometry for the surrounding terrain.
High and medium resolution voxels used for the multiresolution re-
flectance recovery are indicated in white and blue.

The complete high-resolution model of the main structure used
89 million polygons in 442 non-empty voxels (Figure 14). The
lowest-resolution model contained 1.8 million polygons, and the
surrounding environment used 366K polygons.

3.5 Photograph Acquisition and Alignment

Images were taken of the scene from a variety of viewpoints and
lighting conditions using the Canon 1Ds camera. We used a semi-
automatic process to align the photographs to the 3D scan data.
We began by marking approximately 15 point correspondences be-
tween each photo and the infrared intensity return image of one
or more 3D scans, forming a set of 2D to 3D correspondences.
From this we estimated the camera pose using Intel’s OpenCV li-
brary, achieving a mean alignment error of between 1 and 3 pix-
els at 4080× 2716 pixel resolution. For photographs with higher

alignment error, we use an automatic technique to refine the align-
ment based on comparing the structure’s silhouette in the photo-
graph to the model’s silhouette seen through the recovered camera
as in [Lensch et al. 2001], using a combination of gradient-descent
and simulated annealing.

4 Reflectometry
In this section we describe the central reflectometry algorithm used
in this work. The basic goal is to determine surface reflectance
properties for the scene such that renderings of the scene under
captured illumination match photographs of the scene taken under
that illumination. We adopt an inverse rendering framework as in
[Boivin and Gagalowicz 2002; Debevec 1998] in which we itera-
tively update our reflectance parameters until our renderings best
match the appearance of the photographs. We begin by describ-
ing the basic algorithm and continue by describing how we have
adapted it for use with a large dataset.

4.1 General Algorithm
The basic algorithm we use proceeds as follows:

1. Assume initial reflectance properties for all surfaces

2. For each photograph:

(a) Render the surfaces of the scene using the photograph’s
viewpoint and lighting

(b) Determine a reflectance update map by comparing radi-
ance values in the photograph to radiance values in the
rendering

(c) Compute weights for the reflectance update map

3. Update the reflectance estimates using the weightings from all
photographs

4. Return to step 2 until convergence

For a pixel’s Lambertian component, the most natural update for
a pixel’s Lambertian color is to multiply it by the ratio of its color
in the photograph to its color in the corresponding rendering. This
way, the surface will be adjusted to reflect the correct proportion
of the light. However, the indirect illumination on the surface may
change in the next iteration since other surfaces in the scene may
also have new reflectance properties, requiring further iterations.

Since each photograph will suggest somewhat different re-
flectance updates, we weight the influence a photograph has on a
surface’s reflectance by a confidence measure. For one weight, we
use the cosine of the angle at which the photograph views the sur-
face. Thus, photographs which view surfaces more directly will
have a greater influence on the estimated reflectance properties. As
in traditional image-based rendering (e.g. [Buehler et al. 2001]), we
also downweight a photograph’s influence near occlusion bound-
aries. Finally, we also downweight an image’s influence near large
irradiance gradients in the photographs since these typically in-
dicate shadow boundaries, where small misalignments in lighting
could significantly affect the reflectometry.

In this work, we use the inferred Lafortune BRDF models de-
scribed in Sec. 3.2.3 to create the renderings, which we have found
to also converge accurately using updates computed in this man-
ner. This convergence occurs for our data since the BRDF colors of
the Lambertian and retroreflective lobes both follow the Lambertian
color, and since for all surfaces most of the photographs do not ob-
serve a specular reflection. If the surfaces were significantly more
specular, performing the updates according to the Lambertian com-
ponent alone would not necessarily converge to accurate reflectance
estimates. We discuss potential techniques to address this problem
in the future work section.
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(a) (b) (c) (d)
Figure 15:Computing reflectance properties for a voxel (a)It-
eration 0: 3D model illuminated by captured illumination, with as-
sumed reflectance properties(b) Photograph taken under the cap-
tured illumination projected onto the geometry(c) Iteration 1: New
reflectance properties computed by comparing (a) to (b).(d) It-
eration 2: New reflectance properties computed by comparing a
rendering of (c) to (b).

4.2 Multiresolution Reflectance Solving
The high-resolution model for our scene is too large to fit in mem-
ory, so we use a multiresolution approach to computing the re-
flectance properties. Since our scene is partitioned into voxels,
we can compute reflectance property updates one voxel at a time.
However, we must still model the effect of shadowing and indirect
illumination for the rest of the scene. Fortunately, lower-resolution
geometry can work well for this purpose. In our work, we use full-
resolution geometry (approx. 800K triangles) for the voxel being
computed, medium-resolution geometry (approx. 160K triangles)
for the immediately neighboring voxels, and low-resolution geom-
etry (approx. 40K triangles) for the remaining voxels in the scene.
(The surrounding terrain is kept at a low resolution of 370K trian-
gles.) The multiresolution approach results in over a 90% data re-
duction in scene complexity during the reflectometry of any given
voxel.

Our global illumination rendering system was originally de-
signed to produce 2D images of a scene for a given camera view-
point using path tracing [Kajiya 1986]. We modified the system
to include a new function for computing surface radiance for any
point in the scene radiating toward any viewing position. This al-
lows the process of computing reflectance properties for a voxel to
be done by iterating over the texture map space for that voxel. For
efficiency, for each pixel in the voxel’s texture space, we cache the
position and surface normal of the model corresponding to that tex-
ture coordinate, storing these results in two additional floating-point
texture maps.

1. Assume initial reflectance properties for all surfaces

2. For each voxelV:

(a) LoadV at high resolution,V ’s neighbors at medium res-
olution, and the rest of the model at low resolution

(b) For each pixelp in V ’s texture space

i. For each photographI :
A. Determine ifp’s surface is visible toI ’s cam-

era. If not, break. If so, determine the weight
for this image based on the visibility angle,
and note pixelq in I corresponding top’s pro-
jection intoI .

B. Compute the radiancel of p’s surface in the
direction ofI ’s camera underI ’s illumination

C. Determine an updated surface reflectance by
comparing the radiance in the image atq to
the rendered radiancel .

ii. Assign the new surface reflectance forp as the
weighted average of the updated reflectances from
eachI

3. Return to step 2 until convergence

Figure 16: Estimated surface reflectance properties for an East fa-
cade column in texture atlas form.

Figure 15 shows this process of computing reflectance properties
for a voxel. Fig. 15(a) shows the 3D model with the assumed initial
reflectance properties illuminated by a captured illumination envi-
ronment. Fig. 15(b) shows the voxel texture-mapped with radiance
values from a photograph taken under the captured illumination in
(a). Comparing the two, the algorithm determines updated surface
reflectance estimates for the voxel, shown in Fig. 15(c). The second
iteration compares an illuminated rendering of the model with the
first iteration’s inferred BRDF properties to the photograph, pro-
ducing new updated reflectance properties shown in 15(d). For this
voxel, the second iteration produces a darker Lambertian color for
the underside of the ledge, which results from the fact that theblack
BRDF sample measured in Section 3.2 has a higher proportion of
retroreflection than the average reflectance. The second iteration
is computed with a greater number of samples per ray, producing
images with fewer noise artifacts. Reflectance estimates for three
voxels of a column on the East Facade are shown in texture atlas
form in Fig. 16. Reflectance properties for all voxels of the two
Facades are shown in Figs. 1(b) and 19(d). For our model, the third
iteration produces negligible change from the second, indicating
convergence.

5 Results
We ran our reflectometry algorithm on the 3D scan dataset, comput-
ing high-resolution reflectance properties for the two westmost and
eastmost rows of voxels. As input to the algorithm, we used eight
photographs of the East Facade (e.g. Fig. 1 (a)) and three of the
West Facade, in an assortment of sunny, partly cloudy, and cloudy
lighting conditions. Poorly scanned scaffolding which had been
removed from the geometry was replaced with approximate polyg-
onal models in order to better simulate the illumination transport
within the structure. The reflectance properties of the ground were
assigned based on a sparse sampling of ground truth measurements
made with a MacBeth chart. We recovered the reflectance proper-
ties in two iterations of the reflectometry algorithm. For each iter-
ation of the reflectometry, the illumination was simulated with two
indirect bounces using the inferred Lafortune BRDFs. Computing
the reflectance for each voxel required an average of ten minutes.

Figs. 1(b) and 19(c) show the computed Lambertian reflectance
colors for the East and West Facades, respectively. Recovered tex-
ture atlas images for three voxels of the East column second from
left are shown in Fig. 16. The images show few shading effects,
suggesting that the maps have removed the effect of the illumina-
tion in the photographs. The subtle shading observable toward the
back sides of the columns is likely the result of incorrectly com-
puted indirect illumination due to the remaining discrepancies in
the scaffolding.

Figs. 19(a) and (b) show a comparison between a real pho-
tograph and a synthetic global illumination rendering of the East
Facade under the lighting captured for the photograph, indicating
a consistent appearance. The photograph represents a significant
variation in the lighting from all images used in the reflectometry
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dataset. Fig. 19(d) shows a rendering of the West Facade model un-
der novel illumination and viewpoint. Fig. 19(e) shows the East Fa-
cade rendered under novel artificial illumination. Fig. 19(f) shows
the East Facade rendered under sunset illumination captured from
a different location than the original site.
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Figure 17: Left: Acquiring a ground truth reflectance measurement.
Right: Reflectance comparisons for four locations on the East Fa-
cade

To provide a quantitative validation of the reflectance measure-
ments, we directly measured the reflectance properties of several
surfaces around the site using a MacBeth color checker chart. Since
the measurements were made at normal incidence and in diffuse
illumination, we compared the results to the Lambertian lobe di-
rectly, as the specular and retroreflective lobes are not pronounced
under these conditions. The results tabulated in Fig. 17 show
that the computed reflectance largely agreed with the measured re-
flectance samples, with a mean error of(2.0%,3.2%,4.2%) for the
red, green, and blue channels.

6 Discussion and Future Work
Our experiences with the process suggest several avenues for future
work. Most importantly, it would be of interest to increase the gen-
erality of the reflectance properties which can be estimated using
the technique. Our scene did not feature surfaces with sharp spec-
ularity, but most scenes featuring contemporary architecture do. To
handle this larger gamut of reflectance properties, one could imag-
ine adapting the BRDF clustering and basis formation techniques
in [Lensch et al. 2003] to photographs taken under natural illumi-
nation conditions. Our technique for interpolating and extrapolat-
ing our BRDF samples is relatively simplistic; using more samples
and a more sophisticated analysis and interpolation as in [Matusik
et al. 2003] would be desirable. A challenge in adapting these tech-
niques to natural illumination is that observations of specular be-
havior are less reliable in natural illumination conditions. Estimat-
ing reflectance properties with increased spectral resolution would
also be desirable.

In our process the photographs of the site are used only for esti-
mating reflectance, and are not used to help determine the geome-
try of the scene. Since high-speed laser scan measurements can be
noisy, it would be of interest to see if photometric stereo techniques
as in [Rushmeier et al. 1998] could be used in conjunction with nat-
ural illumination to refine the surface normals of the geometry. [Yu
and Malik 1998] for example used photometric stereo from differ-
ent solar positions to estimate surface normals for a building’s envi-
ronment; it seems possible that such estimates could also be made
given three images of general incident illumination with or without
the sun.

Our experience calibrating the illumination measurement device
showed that its images could be affected by sky polarization. We
tested the alternative of using an upward-pointing fisheye lens to
image the sky, but found significant polarization sensitivity toward

the horizon as well as undesirable lens flare from the sun. More suc-
cessfully, we used a 91% reflective aluminum-coated hemispherical
lens and found it to have less than 5% polarization sensitivity, mak-
ing it suitable for lighting capture. For future work, it might be of
interest to investigate whether sky polarization, explicitly captured,
could be leveraged in determining a scene’s specular parameters
[Nayar et al. 1997].

Finally, it could be of interest to use this framework to investigate
the more difficult problem of estimating a scene’s reflectance prop-
erties under unknown natural illumination conditions. In this case,
estimation of the illumination could become part of the optimiza-
tion process, possibly by fitting to a principal component model of
measured incident illumination conditions.

7 Conclusion
We have presented a process for estimating spatially-varying sur-
face reflectance properties of an outdoor scene based on scanned
3D geometry, BRDF measurements of representative surface sam-
ples, and a set of photographs of the scene under measured natu-
ral illumination conditions. Applying the process to a real-world
archaeological site, we found it able to recover reflectance proper-
ties close to ground truth measurements, and able to produce ren-
derings of the scene under novel illumination consistent with real
photographs. The encouraging results suggest further work be car-
ried out to capture more general reflectance properties of real-world
scenes using natural illumination.
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(a) (b)

(c) (d)

(e) (f)
Figure 19:(a) A real photograph of the East Facade, with recorded illumination(b) Rendering of the model under the illumination recorded
for (a) using inferred Lafortune reflectance properties(c) A rendering of the West Facade from a novel viewpoint under novel illumination.
(d) Front view of computed surface reflectance for the West Facade (the East is shown in Fig. 1(b)). A strip of unscanned geometry above the
pediment ledge has been filled in and set to the average surface reflectance.(e)Synthetic rendering of the West Facade under a novel artificial
lighting design.(f) Synthetic rendering of the East Facade under natural illumination recorded for another location. In these images, only
the front two rows of outer columns are rendered using the recovered reflectance properties; all other surfaces are rendered using the average
surface reflectance.
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