
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

ICCV
#7103

ICCV
#7103

ICCV 2021 Submission #7103. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

VaPiD: A Rapid Vanishing Point Detector via Learned Optimizers

Anonymous ICCV submission

Paper ID 7103

Abstract

Being able to infer 3D structures from 2D images with
geometric principles, vanishing points have been a well-
recognized concept in the 3D vision for a long time. It has
been widely used in autonomous driving, SLAM, and AR/VR
for applications such as road direction estimation, camera
calibration, and camera pose estimation. Existing vanish-
ing point detection methods often need to trade off among
robustness, precision, and inference speed. In this paper,
we introduce VaPiD, a novel neural network-based rapid
Vanishing Point Detector that achieves unprecedented effi-
ciency with learned vanishing point optimizers. The core
of our method contains two components: a vanishing point
proposal network that gives a set of vanishing point propos-
als as coarse estimations; and a neural vanishing point op-
timizer that iteratively optimizes the positions of the vanish-
ing point proposals to achieve high-precision levels. Exten-
sive experiments on both synthetic and real-world datasets
show that our method provides competitive, if not better,
performance as compared to the previous state-of-the-art
vanishing point detection approaches while being signifi-
cantly faster.

1. Introduction
Vanishing points are defined as the intersection points of

3D parallel lines when projected onto a 2D image. Van-
ishing points provides geometry-based method to infer the
3D structure of a scene, which underpin a variety of appli-
cations, such as camera calibration [21, 7], facade detec-
tion [25], 3D reconstruction [15], 3D scene structure anal-
ysis [16, 40], 3D lifting of lines [30], SLAM [44], and au-
tonomous driving [22].

Efforts have been made on vanishing point detection in
the past decades. Traditionally, vanishing points are de-
tected in two stages. In the first stage, a line detection al-
gorithm, such as probabilistic hough transformation [18] or
LSD [39], is used to extract a set of line segments. In the
second stage, a line clustering algorithm [26] or a voting
procedure [3] is used to estimate vanishing points from the

(a) Input image (b) Our results

0.088° 0.090°

0.209°

Figure 1: We propose a novel vanishing point detection
network VaPiD, which runs in real-time with high accu-
racy. Top: Speed-accuracy curves compare with state-of-
the-art methods on the SU3 dataset [47]. Dotted horizontal
lines labeled with nε represent the nth smallest angle errors
that numerically can be represented by 32-bit floating point
numbers when computing arccos〈d1,d2〉. Bottom: visual
results show that our vanishing points detection is able to
handle complex scene structures. Lines group in the same
color indicates a predicted vanishing point.

line segments. The main weakness of this pipeline is that
the extracted lines might be noisy and have many outliers,
leading to spurious results after clustering or voting. To
make algorithms more robust, people can resort to priors
for the underlying scenes, such as Manhattan worlds [4] or
Atlanta worlds [31] that are common in man-made environ-
ments. Nevertheless, additional assumptions complicate the
setting of the problem, and the algorithms might not work

1

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

ICCV
#7103

ICCV
#7103

ICCV 2021 Submission #7103. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

well when these assumptions do not hold.
Recent CNN-based deep learning approaches [6, 5, 43,

42, 19, 46] has demonstrated the robustness of data-driven
approach. In particular, NeurVPS [46] provides a frame-
work to detect vanishing points in an end-to-end fashion
without relying on external heuristic line detectors. They
propose conic convolution to exploit the geometry prop-
erties of vanishing points by enforcing the feature extrac-
tion and aggregation along the structural lines of vanishing
point candidates. This approach achieves satisfactory per-
formance, but it is inefficient as it requires evaluating all
possible vanishing points in an image (1FPS is reported).
In contrast, most vanishing point applications are required
to run in an online fashion in practice.

To this end, we introduce VaPiD, a novel end-to-end
rapid vanishing point detector that significantly boosts the
model efficiency using learned optimizers. VaPiD consists
of two components: (1) a vanishing point proposal network
(VPPN) that takes an image and returns a set of vanishing
point proposals. It harnesses a computation sharing scheme
to efficiently process dense vanishing point anchors; (2) a
neural vanishing point optimizer (NVPO) that takes each
proposal as input and optimizes for its position with a neu-
ral network in an iterative fashion. In each iteration, it re-
fines the vanishing points by regressing the residuals and
updating the estimates. Our approach can be considered as
learning to optimize. Compared to the previous coarse-to-
fine method [46], our optimizing scheme avoids enumerat-
ing all possible vanishing point candidate positions, which
largely improves the model efficiency.

We comprehensively evaluate our method on four pub-
lic datasets including one synthetic dataset and three real-
world datasets. VaPiD significantly outperforms previous
works in terms of both speed and accuracy. Remarkably, on
the synthetic dataset, the cosine of the median angle error
(0.088°) is close to the machine epsilon of 32-bit floating-
point numbers1, which indicates that VaPiD pushes the de-
tection accuracy to the limitation of the numerical num-
bers. With fewer refinement iterations, VaPiD runs at 26
frames per second while maintaining a median angle error
of 0.145° for 512×512 images with 3 vanishing points.

2. Related Work
Vanishing Point Detection. Early work represents van-
ishing points using unit vectors on a sphere (the Gaus-
sian sphere), which reveals the link between the 2D van-
ishing point and the 3D line direction [3, 29]. Modern
line-based vanishing point detection approaches first detect
the line segments, which are then used to cluster vanish-
ing points [41, 26, 27, 20]. Among them, LSD [39] with

1The cosine error is the dot product of the direction represented by
predicted vanishing points and ground truth vanishing points. It limits how
accurate you can represent a vanishing point with floating-point numbers.

J-linkage [36, 10] is probably the most widely used algo-
rithms in this category. These methods work well on im-
ages with strong line signals, but are not robust to noises
and outliers [33]. Therefore, structure constraints such as
orthogonality properties are often used to increase the ro-
bustness. For example, the “Manhattan world” assumption
is made with three mutually orthogonal vanishing direc-
tions [8, 28, 24]. Similarly, under an “Atlanta world” as-
sumption [32], the vanishing points are detected in a com-
mon horizon line [2, 23, 41].

Recently, we see the success of CNN-based research on
vanishing point detection. Chang et al. [6] detects vanish-
ing points in the image frame by classifying over image
patches. Zhai et al. [42] learns the prior of the horizon its
associated vanishing points in human-made environments.
Kluger et al. [19] projects lines in the image to Gaussian
sphere and regresses directly on the spherical image to find
the vanishing points. The aforementioned approaches all
use the neural networks as regressors. Zhou et al. [46] in-
troduces the conic convolutions that can make use of the
vanishing point-related geometry cues. Our approach also
utilizes conic convolutions. However, we employ a com-
putation sharing scheme that enables conic convolutions to
process large-scale vanishing points.

Learning to Optimize. Using neural network layers to
mimic the steps of optimization algorithms has shown to be
effective in many computer vision tasks. Gregor et al. [14]
first explored training a neural network as the approxima-
tion of an optimizer for sparse coding. This approach has
been further adopted to image super-resolution [9], novel
view synthesis [11] and optical flow [37]. We follow this
line of works and train a neural network that iteratively esti-
mates the residuals and updates the vanishing points. How-
ever, different from previous works, our network optimizes
the vanishing points in a rotation invariant manner as our
optimization space is a spherical space.

3. Method
3.1. Background

Geometry Representation of Vanishing Points. In this
work, we adopt the Gaussian sphere representation of van-
ishing points [3]. The position of a vanishing point v =
[vx, vy]T ∈ R2 in an image encodes a set of parallel 3D
lines with direction d = [vx−cx, vy−cy, f]T ∈ R3, where
[cx, cy]T ∈ R2 is the optical center and f is the focal length
of the camera. Representing vanishing points with d in-
stead of v avoids the degenerate cases where the projected
lines are parallel in 2D. In addition, we are now able to use
the angle between two 3D unit vectors as the distance be-
tween two vanishing points. This serves as a natural metric
for evaluating the accuracy of detected vanishing points. In

2

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

ICCV
#7103

ICCV
#7103

ICCV 2021 Submission #7103. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Backbone Vanishing point proposal networkInput image Neural vanishing point optimizer

PNMS

T iters

Conv Efficient conic conv Vanilla conic conv

Output

d
(0)
1

d
(0)
2

d(0)
n

d
(T)
1

d
(T)
2

d(T)
n

Update operator

d(1)
n

share weight

Figure 2: The architecture of our proposed VaPiD. It incorporates three major components: (1) a backbone network for
feature extraction from the input image; (2) a vanishing point proposal network (VPPN) to generate reliable vanishing point
proposals with efficient conic convolutions; (3) a weight sharing neural vanishing point optimizer (NVPO) to refine each
vanishing point proposal to achieve high accuracy. Note that our network is trained in an end-to-end fashion.

this paper, we use d to represent the counterpart of v in the
Gaussian sphere.

Conic Convolutions. The conic convolution [46] is de-
signed to extract features for vanishing point detection by
rotating the convolution kernel towards a vanishing point
candidate. Specifically, a conic convolution takes a fea-
ture map and a convolution center (the position of vanishing
point candidates) on the image as input, and outputs another
feature map. Mathematically, a 3×3 conic convolution op-
erator “∗” is defined as:

(F ∗w)(p |v)

=

1∑
i=−1

1∑
j=−1

w(i, j) · F
(
p +Rv−p ·

[
i
j

])
,

(1)

where F is the input feature map, w is a 3×3 trainable con-
volution filter, p ∈ R2 is the coordinates of the output pixel,
v is the convolution center that is set to be the candidate
positions of vanishing points, and Rv−p is a 2D rotation
matrix that rotates the x-axis to the direction of v − p. In
other words, conic convolution is a structured convolution
operator that always rotates the filters towards the vanish-
ing point v regardless of the output pixel coordinates p. In-
tuitively, conic convolution can be understood as a way to
check whether there are enough lines shooting from a van-
ishing point.

3.2. Overview

Fig. 2 illustrates our overall workflow. VaPiD takes an
image as input and predicts the associated vanishing points.
Specifically, our vanishing point proposal network (VPPN)
generates a set of coarse vanishing point proposals using
the feature map from the backbone network. The neural

vanishing point optimizer (NVPO) then optimizes each pro-
posal individually for a fixed number of iterations. We in-
troduce the designs of the VPPN in Sec. 3.3 and the NVPO
in Sec. 3.4. Finally, we describe the loss functions for train-
ing both modules in Sec. 3.5.

3.3. Vanishing Point Proposals

The goal of the vanishing point proposal network
(VPPN) is to produce a set of vanishing point proposals ef-
ficiently. Let {vi}Ni=1 be an anchor point grid of sizeN on a
unit sphere. The vanishing point proposal network classifies
each anchor point to determine whether there is a vanishing
point around it. We employ a point-based non-maximum
suppression (PNMS) on the score map of the anchor grid to
generate the final candidates.

Efficient Conic Convolutions. Given a vanishing point
anchor vi, the conic convolution centered at vi relates the
vanishing point to its line features. However, the conic con-
volution needs to process each vanishing point anchor sep-
arately, which is slow when N is large. To solve this prob-
lem, we propose the efficient conic convolution operator to
quickly compute N feature maps by reusing some internal
results with approximations.

Our key observation is that the rotation matrix R(·) in
Equ. 1 is the only factor that varies regarding the same pixel
p. For a dense anchor point grid, the computation is re-
dundant as multiple anchors may share similar rotation an-
gles. Therefore, our method first approximates R(v−p) by
K rotation matrices {Rk}K−1k=0 , where Rk is a 2D rotation
matrix that rotates 2πk

K rad. We then pre-compute the fea-
ture map Gk by convolving the input feature map with the
kernel rotated by R−1k . After that, we can efficiently ap-
proximate the vanilla conic convolutions by retrieving the

3

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

ICCV
#7103

ICCV
#7103

ICCV 2021 Submission #7103. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a) Confidence score map (b) Vanishing point proposals w/ PNMS

Figure 3: Illustration of point-based non-maximum sup-
pression (PNMS). (a) The confidence score map of a dense
vanishing point anchor grid predicted by our efficient conic
convolution networks. Higher scores are visualized as solid
spheres with larger radius. (b) Top-3 vanishing point pro-
posals after PNMS.

features from the pre-computed feature maps with the clos-
est rotation angles. This process can be described with the
following formulas:

(F ∗w)(p |v) (2)

≈
1∑

i=−1

1∑
j=−1

w(i, j) · F
(
p + Rkv,p

[
i
j

])
(3)

≈
1∑

i=−1

1∑
j=−1

w

(
R−1kv,p

·
[
i
j

])
F
(
p +

[
i
j

])
(4)

≈
(
F ⊗ ROTATEKERNEL(w,R−1kv,p

)
)

(p) (5)
.
= Gkv,p(p),

where kv,p = arg maxk Tr(Rk · RTv−p) is the index of the
closest rotation matrix, ROTATEKERNEL(w,R−1kv,p

) rotates
the convolutional kernel w with 2D rotation matrix R−1kv,p

,
“⊗” is the symbol of a regular convolution, and {Gk}Kk=1 is
the set of pre-computed feature maps with 2D regular con-
volutions. Here, (2)-(3) is the step of rotation quantization,
(3)-(4) is integration by substitution, and (4)-(5) is accord-
ing to the definition of rotation and convolution. Once we
obtain the feature maps for all the anchor points, we pass
them into a fully connected layer with a Sigmoid activation
to obtain the classification scores.

To compute the feature maps for a dense vanishing point
grid of size N , the vanilla conic convolutions require N
times network forwards, while the proposed efficient conic
convolutions only requireK times network forwards, where
K is the number of quantized rotation matrices. We find
that setting K = 64 � N can already give good approx-
imations. In addition, efficient conic convolution only re-
quires regular 2D convolution instead of deformable convo-
lutions as used in [46], which in practice is much faster due
to tremendous engineering efforts in modern deep learning

frameworks.

Vanishing Point Non-Maximum Suppression. The
dense score maps tend to be smooth. To remove dupli-
cated proposals, we adopt a point-based non-maximum sup-
pression (PNMS) approach, inspired by the widely adopted
NMS techniques in object detection [12]. PNMS keeps the
vanishing points with the greatest scores locally and sup-
presses its neighboring vanishing points within an angle
threshold Γ. Figure 3 illustrates the effect of PNMS. After
PNMS, we select the top-K ranked anchors as our propos-
als.

3.4. Learning to Optimize Vanishing Points (NVPO)

The goal of the NVPO is to fine-tune the vanishing point
positions starting from the initial proposal d(0). Our NVPO
emulates the process of iterative optimization and produces
a sequence of estimates

{
d(1), . . . ,d(T)

}
. In each itera-

tion, it takes the image feature map and the current vanish-
ing point position d(t) to regress an update vector ∆(t) with
the conic convolution network [46]. It then applies the up-
date vector to the current vanishing point and obtains the
next estimate: d(t+1) = d(t) ⊕ ∆(t). For each vanishing
point proposal, we use T iterations. The network weights of
the NVPO are shared across all the refinement iterationAs
we only process a small number of vanishing points and,
we adopt the vanilla conic convolutions in our NVPO. We
provide the network structure details in the supplementary
materials.

We note that the update is applied in a local system de-
fined by the position of vanishing points to avoid the prob-
lem of Gimbal lock, as illustrated in Fig. 4. We first write
out d(t) and ∆(t) using the spherical coordinate:

d(t) =
[
cos θ(t) sinφ(t) sin θ(t) sinφ(t) cosφ(t)

]T
∆(t) =

[
cos δθ(t) sin δφ(t) sin δθ(t) sin δφ(t) cos δφ(t)

]T
We then define the local system (X ′, Y ′, Z ′), where the Z ′-
axis corresponds d(t) while keeping Z-axis lies in the Y ′Z ′

plane. The update vector is then applied to the current esti-
mate in (X ′, Y ′, Z ′). This process can be viewed as a rota-
tion transformation

d(t+1) =
[
e(t) d(t) × e(t) d(t)

]
·∆(t),

where e(t) = [− sinφ(t), cosφ(t), 0]T .
An important property of such update scheme is rota-

tional equivariant. If one rotates the vanishing points about
the optical center, the refined vanishing points should ro-
tate the same. This property is guaranteed by our method
as the conic convolutions centered at the vanishing points is
by nature rotation invariant.

Although the NVPO still uses conic convolution to com-
pute the features, our approach is more efficient compared

4

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

ICCV
#7103

ICCV
#7103

ICCV 2021 Submission #7103. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

X

Y

Z

X 0

Y 0

Z 0

(a) Local system (b) Update operator

�(t)

✓(t)

�(t)

d(t+1)d(t)

Figure 4: Illustration of our update operator. (a) Given the
camera system (X,Y, Z) and the current vanishing point
position d(t), we define the local system (X ′, Y ′, Z ′). (b)
We obtain the refined vanishing point d(t+1) by applying
the update vector ∆(t) in the local system.

to NeurVPS [46]. Specifically, NeurVPS samples candi-
date positions near the current estimates and uses conic con-
volutional networks to classify if each candidate is near a
real vanishing point. Even with a coarse-to-fine strategy,
it still needs to forward the conic convolutional networks
144 times per vanishing point in order to reach high preci-
sion levels, which largely limits the model efficiency. We
instead adopt a learning to optimize methodology and di-
rectly regress the residuals of the vanishing points with our
conic convolutional networks. Such a design greatly accel-
erates the overall process. For instance, we can now achieve
better performance than NeurVPS with only a few net-
work forwards. Alternatively, our approach can be viewed
as solving for equilibrium points: our update formulation
d(t+1) = d(t) ⊕ ∆(t) = f(d(t)) can be viewed as a fixed
point iteration method, but is learned.

3.5. Loss Functions

For training VPPN, we assign a binary class label for
each vanishing point anchor, where only the anchors with
the closest angle to a ground truth are assigned with positive
labels. This gives:

Lcls =

N∑
i=1

BCE(li, l
∗
i), (6)

where li is the classification score for the i-th anchor and
l∗i is the assigned label. For training NVPO, we sample
M anchors around the ground truths as the initial states and
supervise NVPO with an angular loss between the estimates
and the ground truths for each step:

Lref =

M∑
i=1

T∑
t=1

arccos(|〈vti ,v∗i 〉|). (7)

We jointly train both modules with the final loss:

L = Lcls + λLref , (8)

where λ is a hyper-parameter.

4. Results
4.1. Datasets

We conduct empirical studies on the following datasets.
SU3 Wireframe [47]. SU3 Wireframe is a photo-realistic
synthetic urban scene dataset generated with a procedural
building generator. It contains 22,500 training images and
500 validation images. The dataset assumes “Manhattan
world” scenes, where each image has exact three mutual
perpendicular vanishing points. The ground truths are cal-
culated from the CAD models, which are accurate enough
for a systematic investigation of our method.
Natural Scene [48]. Collected from AVA and Flickr, this
dataset contains images of natural scenes where the authors
pick only one dominant vanishing point as the ground truth.
We adopt the data split from [46] that divides the images
into 2,000 training samples and 275 test samples.
HoliCity [45]. Holicity is a city-scale real-world dataset
with rich structural annotations. The ground truths are ac-
curately aligned with the CAD model of downtown London.
The numbers of vanishing points range from one to six for
each scene. We adopt the standard split that contains 45,032
training samples and 2,504 validation samples.
NYU-VP [20]. This dataset is manually labeled based on
the NYU Depth V2 dataset [34]. It contains 1,449 indoor
images. While most images show three ground truth van-
ishing points, it ranges from one to eight. We follow [20]
and split the dataset into 1,000 training samples, 224 vali-
dation samples, and 225 testing samples.

4.2. Experiment Setups

Evaluation Metrics. We evaluate our method using mean
and median angle errors. To better inspect our method un-
der various precision levels, we also make use of angle ac-
curacy (AA) metrics [46], where AAα is defined as the area
under the angle accuracy curve between [0, α] divided by α.
For NYU-VP dataset, we apply the Hungarian method to
match the vanishing points following the authors and adopt
the AUC metric provided by the authors.
Baselines. We compare our method against traditional ro-
bust fitting methods J-Linkage [10], T-Linkage [26], Se-
quential RANSAC [38], Multi-X [1], MCT [27], and a re-
cent learning-based method CONSAC [20] based on line
segments extracted with LSD [39]. For vanishing point de-
tection methods, we compare our method against traditional
methods VPDet [48] and Simon et al. [35]. For learning-
based vanishing point detection methods, we compare our
method against Zhai et al. [42], Kluger et al. [19] and pre-
vious state-of-the-art method NeurVPS [46].

4.3. Implementation Details

We implement our network in PyTorch. We resize the
input images to 512×512 and uniformly sample an anchor

5

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

ICCV
#7103

ICCV
#7103

ICCV 2021 Submission #7103. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

grid of size N = 1, 024 using Fibonacci lattice [13]. For
generating vanishing point proposals, we set the PNMS
threshold Γ = 15° and keep the top-K proposals if the
dataset assumes a fixed number of vanishing points K, oth-
erwise we set K = 6. For vanishing point refinement, we
set the estimation cap S = 20°, and compute losses for
T = 8 refinement steps. We use Adam optimizer [17] with
a learning rate of 3× 10−4 to train the network. We set the
trade-off parameter λ = 1. Please refer to the supplemen-
tary material for more training details.

4.4. Results on Synthetic Datasets

We show our results on the SU3 Wireframe dataset [47]
in Tab. 1, and plot the AA curves in Fig. 5. With simi-
lar speed, VaPiD achieves an order of magnitude improve-
ment over the naive CNN classification and regression base-
lines. VaPiD also significantly outperforms the traditional
line-based J-Linkage clustering method [10]. Note that the
synthetic dataset contains many sharp edges and long lines,
which by nature favors the line-based detectors. These im-
provements validate the efficacy of geometry-inspired net-
work designs such as conic convolutions and efficient conic
convolutions. We also observe that our method runs 17
times faster than our strong baseline NeurVPS [46], while
achieving better accuracies on all metrics. This indicates
that our learning to optimize scheme can greatly improve
the model efficiency upon the coarse-to-fine enumerating
strategy used in NeurVPS.

Remarkably, VaPiD is trained with angular metrics, but
achieves a median angle error of 0.089° with float32. Here
we note that 1 − cos(0.089°) ≈ 1.2 × 10−6, which is very
close to the machine epsilon of float322. This fact indicates
that the detection accuracy of VaPiD is more likely to be
bounded by numerical errors rather than the detection pre-
cision. This is also reflected in the stepped curves in Fig. 5.

4.5. Results on Real-world Datasets

Comparisons on Natural Scene. We show the compar-
isons on the Natural Scene dataset [48] in Tab. 2 and
Fig. 6. Our method significantly outperforms the naive
CNN classification and regression baselines as well as the
contour-based clustering algorithm VPDet [48] in all met-
rics. Our method also outperforms the strong baseline
NeurVPS [46] in most of the metrics. We note that the
Natural Scene [48] is captured by different cameras with
different focal lengths. Such data favors enumeration-based
methods over the optimization-based methods especially at
a tighter angle threshold (i.e. below 1°). Nonetheless, We
highlight that for images with a dominant vanishing point,
VaPiD can run in real-time (43FPS) while maintaining com-
petitive performance.

2The machine epsilon of float32 is ε ≈ 1.2× 10−7

AA.2° AA.5° AA1° Mean Median
CNN-reg 2.03 6.48 15.02 2.077° 1.481°
CNN-cls 2.17 9.10 23.71 1.766° 0.984°
J-Linkage [10] 27.89 48.07 62.34 3.888° 0.209°
NeurVPS [46] 47.59 74.26 86.35 0.147° 0.090°
VaPiD 48.33 74.79 86.66 0.145° 0.088°

Table 1: Comparisons of mean, median angle errors and the
angular accuracies of 0.2°, 0.5°, 1° with baseline methods
on SU3 dataset [47].

AA1° AA2° AA10° Mean Median
CNN-reg 2.4 9.9 58.8 5.09° 3.20°
CNN-cls 4.4 14.5 62.4 5.80° 2.79°
VPDet [48] 18.5 33.0 60.0 12.6° 1.56°
NeurVPS [46] 29.1 50.3 85.5 1.83° 0.87°
VaPiD 24.6 50.5 87.4 1.26° 0.87°

Table 2: Comparisons of mean, median angle errors and the
angular accuracies of 1°, 2°, 10° with baseline methods on
Natural Scene dataset [48].

AA1° AA2° AA10° Mean Median
NeurVPS [46] 18.2 31.7 62.1 8.32° 1.78°
VaPiD 22.1 39.6 75.4 3.00° 1.19°

Table 3: Comparisons of mean, median angle errors and the
angular accuracies of 1°, 2°, 10° with baseline methods on
HoliCity dataset [45].

AUC10° Supervised
Multi-X [1] † 41.3 no
MCT [27] † 47.0 no
Sequential RANSAC [38] † 53.6 no
T-Linkage [26] † 57.8 no
Kluger et al. [19] 61.7 yes
Simon et al. [35] 62.1 no
Zhai et al. [42] 63.0 yes
CONSAC [20] † 65.0 yes
VaPiD 69.5 yes

Table 4: Comparisons of AUC values at 10° with baseline
methods on NYU-VP dataset [20]. Supervised methods are
noted as “yes” in the last column. † Method requires addi-
tional line segment detector such as LSD [39].

Comparisons on HoliCity. We compare our method and
NeurVPS [46] on a challenging real-world dataset, HoliC-
ity [45]. The dataset embraces an Atlanta world scene
assumption and contains images with various numbers of

6

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

ICCV
#7103

ICCV
#7103

ICCV 2021 Submission #7103. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Angle Difference (degree)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Pe
rc

en
ta

ge

AA Curves @ 0.5 on SU3 Wireframe

VaPiD
NeurVPS
LSD + J-Linkage
CNN Regression
CNN Classification

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Angle Difference (degree)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Pe
rc

en
ta

ge

AA Curves @ 2 on SU3 Wireframe

VaPiD
NeurVPS
LSD + J-Linkage
CNN Regression
CNN Classification

10 100
Inference Time per Vanishing Point (millisecond)

0.1

0.3

1.0

3.0

M
ed

ia
n

A
ng

le
 E

rr
or

 (d
eg

re
e)

Speed-acc Comparisons on SU3 Wireframe

VaPiD
NeurVPS
LSD+J-Linkage
CNN Regression
CNN Classification

Figure 5: Angle accuracy curves and speed-accuracy comparisons for different methods on SU3 wireframe dataset [47].

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Angle Difference (degree)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Pe
rc

en
ta

ge

AA Curves @ 2 on Natural Scene

VaPiD
NeurVPS
VPDet
CNN Regression
CNN Classification

0.0 1.2 2.4 3.6 4.8 6.0 7.2 8.4 9.6 10.8
Angle Difference (degree)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Pe
rc

en
ta

ge
AA Curves @ 12 on Natural Scene

VaPiD
NeurVPS
VPDet
CNN Regression
CNN Classification

100 1000
Inference Time per Vanishing Point (millisecond)

1.0

2.0

3.0

4.0

M
ed

ia
n

A
ng

le
 E

rr
or

 (d
eg

re
e)

Speed-acc Comparisons on Natural Scene

VaPiD
NeurVPS
VPDet
CNN Regression
CNN Classification

Figure 6: Angle accuracy curves and speed-accuracy comparisons for different methods on Natural Scene dataset [48]

vanishing points. Our method significantly outperforms
NeurVPS. The performance gain partly originates from
more vanishing points being successfully retrieved. This
shows that our VPPN can adapt to more complex scenes.
Thanks to our efficient conic convolutions, we can now pro-
cess a much denser anchor grid to produce fine-grained pro-
posals.

Comparisons on NYU-VP. We compare against recent
robust fitting methods CONSAC [20], T-Linkage [26], Se-
quential RANSAC [38], Multi-X [1], MCT [27], and van-
ishing point detection methods Simon et al. [35], Zhai et
al. [42] and Kluger et al. [19] on the NYU-VP dataset [20],
and show the results in Tab. 4. To fairly compare with the
baselines, we follow [20] and use the Hungarian method to
match the predictions and the ground truths. We find that
supervised methods perform better than traditional methods
in general, and our method outperforms all baselines by a
large margin. Compared to robust fitting methods, VaPiD
does not rely on prior line detectors. Instead, thanks to our
geometry-inspired structures, VaPiD can extract meaning-
ful and robust line features from raw images intrinsically
via end-to-end supervised learning. Compared to recent
learning-based vanishing point detectors, VaPiD can make
use of rich geometry cues, i.e. vanishing point-related line
features, to accurately locate the vanishing points.

Rec2° Rec4° Rec6° Mean Median
VPPN-ECC 33.20 72.13 89.53 0.554° 0.101°
VPPN 56.20 95.67 99.00 0.146° 0.089°

Table 5: Ablation study on the efficient conic convolutions.
“VaPiD-ECC” denotes the baseline without using our pro-
posed efficient conic convolutions.

Qualitative Results. We visualize our detected vanishing
points on Holicity [45] in Figure 4. VaPiD generalizes well
to different types of scenes and is robust to the perspective
distortions. Thanks to the VPPN, our method can handle
the input images with various numbers of vanishing points
(e.g. 2 for the second-row left panel, 3 for the third-row
left panel, and 4 for the second-row right panel) without
making assumptions on the geometry priors. We can also
find cases where our predictions are more reasonable than
ground truths (orange in the second-row right panel).

4.6. Ablations

In this section, we perform a set of ablation experiments
to investigate the effect of each component in our VPPN
and NVPO respectively. All experiments are conducted on
SU3 Wireframe [47] to better analyze our method, as we
can eliminate the labeling errors using synthetic images.

7

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

ICCV
#7103

ICCV
#7103

ICCV 2021 Submission #7103. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a) Input (c) Ground truth(b) VaPiD result (a) Input (c) Ground truth(b) VaPiD result

Figure 7: Visualization of our vanishing point detection results on various types of scenes. For each of the vanishing point,
we visualize it using a group of 2D lines in the same color. Better view in color.

AA.1° AA.5° AA2° Mean Med. FPS
NVPO 4× 15.1 62.1 89.0 0.227° 0.145° 26
NVPO 6× 24.3 72.7 92.4 0.157° 0.096° 22
NVPO 8× 26.6 74.8 93.0 0.145° 0.088° 17
NVPO 12× 27.5 75.2 93.2 0.141° 0.086° 13
NVPO 16× 27.6 75.3 93.2 0.140° 0.086° 10
NVPO 24× 28.1 75.6 93.3 0.139° 0.085° 7

Table 6: Ablation study on the number of refinement steps.
(T×) means T refinement steps during the inference.

The Effect of Efficient Conic Convolutions. The effi-
cient conic convolutions are the core of our VPPN. In Tab. 5,
we demonstrate the effectiveness of the efficient conic con-
volutions by investigating a variant of VPPN (VPPN-ECC)
that replaces the efficient conic convolutions with vanilla
conic convolutions but has a similar computation cost. As
the goal of our VPPN is to pinpoint all of the vanish-
ing point proposals, we adopt a recall metric, where Recα

means the fraction of the ground truths that are successfully
retrieved by one of the vanishing point proposals within
the threshold of α. In Tab. 5, we observe that VPPN out-
performs the VPPN-ECC baseline on all metrics. We note
that the average closest neighbor angle of our anchor grid is
4.3°. We find that VPPN achieves 99% recall with a thresh-
old of 6°, where the VPPN-ECC variant still struggles at
90%. This validates the efficiency of the computation shar-
ing scheme in our efficient conic convolutions.

Convergence of the Learned Optimizer. In the training
stage, we compute losses for a fixed refinement steps of 8.
To investigate the convergence of our NVPO, we apply dif-
ferent refinement steps during inference and show the re-
sults in Tab. 6. As the refinement step increases, it is clear
that our NVPO gradually produces better vanishing point
estimates, and can converge to a fixed point. We also make
two key observations: (1) our method runs at nearly real-
time (26FPS) with 4 refinement steps, yet is still accurate
enough (with a 0.15° median error) for most of the down-
stream applications; (2) even with a saturated 24 refinement
steps, our method still runs 7 times faster than previous
state-of-the-art [46] while being more accurate.

5. Conclusion

This paper presents a novel vanishing points detection
approach based on neural networks that achieves state-of-
the-art performance while being significantly faster than
previous works. Our method contains two designated mod-
ules: a novel vanishing points proposal network and a neu-
ral vanishing point optimizer. Our key insight is to use
the computation sharing to accelerate massive convolution
operations, and embrace a learning to optimize method-
ology that progressively learns the residual of the objec-
tives. In future work, we will study how to combine VaPiD
with downstream applications such as scene understanding
and camera pose estimation. It is also worth investigating
whether implementing our neural optimizer with a deep im-
plicit layer can lead to even better efficiency.

8

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

ICCV
#7103

ICCV
#7103

ICCV 2021 Submission #7103. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

References
[1] Daniel Barath and Jiri Matas. Multi-class model fitting by

energy minimization and mode-seeking. In Proceedings
of the European Conference on Computer Vision (ECCV),
pages 221–236, 2018. 5, 6, 7

[2] Olga Barinova, Victor Lempitsky, Elena Tretiak, and Push-
meet Kohli. Geometric image parsing in man-made environ-
ments. In European conference on computer vision, pages
57–70. Springer, 2010. 2

[3] Stephen T Barnard. Interpreting perspective images. Artifi-
cial intelligence, 21(4):435–462, 1983. 1, 2

[4] Jean-Charles Bazin and Marc Pollefeys. 3-line RANSAC
for orthogonal vanishing point detection. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems,
pages 4282–4287. IEEE, 2012. 1

[5] Ali Borji. Vanishing point detection with convolutional neu-
ral networks. arXiv preprint arXiv:1609.00967, 2016. 2

[6] Chin-Kai Chang, Jiaping Zhao, and Laurent Itti. Deepvp:
Deep learning for vanishing point detection on 1 million
street view images. In 2018 IEEE International Conference
on Robotics and Automation (ICRA), pages 1–8. IEEE, 2018.
2

[7] Roberto Cipolla, Tom Drummond, and Duncan P Robertson.
Camera calibration from vanishing points in image of archi-
tectural scenes. In BMVC, volume 99, pages 382–391, 1999.
1

[8] James M Coughlan and Alan L Yuille. Manhattan world:
Compass direction from a single image by bayesian infer-
ence. In Proceedings of the seventh IEEE international con-
ference on computer vision, volume 2, pages 941–947. IEEE,
1999. 2

[9] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou
Tang. Image super-resolution using deep convolutional net-
works. IEEE transactions on pattern analysis and machine
intelligence, 38(2):295–307, 2015. 2

[10] Chen Feng, Fei Deng, and Vineet R Kamat. Semi-automatic
3d reconstruction of piecewise planar building models from
single image. CONVR (Sendai:), 2010. 2, 5, 6

[11] John Flynn, Michael Broxton, Paul Debevec, Matthew Du-
Vall, Graham Fyffe, Ryan Overbeck, Noah Snavely, and
Richard Tucker. Deepview: View synthesis with learned
gradient descent. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2367–
2376, 2019. 2

[12] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
580–587, 2014. 4

[13] Álvaro González. Measurement of areas on a sphere using
fibonacci and latitude–longitude lattices. Mathematical Geo-
sciences, 42(1):49, 2010. 6

[14] Karol Gregor and Yann LeCun. Learning fast approxima-
tions of sparse coding. In Proceedings of the 27th inter-
national conference on international conference on machine
learning, pages 399–406, 2010. 2

[15] Erwan Guillou, Daniel Meneveaux, Eric Maisel, and Kadi
Bouatouch. Using vanishing points for camera calibration
and coarse 3d reconstruction from a single image. The Visual
Computer, 16(7):396–410, 2000. 1

[16] Varsha Hedau, Derek Hoiem, and David Forsyth. Recover-
ing the spatial layout of cluttered rooms. In 2009 IEEE 12th
international conference on computer vision, pages 1849–
1856. IEEE, 2009. 1

[17] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 6

[18] Nahum Kiryati, Yuval Eldar, and Alfred M Bruckstein.
A probabilistic Hough transform. Pattern recognition,
24(4):303–316, 1991. 1

[19] Florian Kluger, Hanno Ackermann, Michael Ying Yang, and
Bodo Rosenhahn. Deep learning for vanishing point de-
tection using an inverse gnomonic projection. In German
Conference on Pattern Recognition, pages 17–28. Springer,
2017. 2, 5, 6, 7

[20] Florian Kluger, Eric Brachmann, Hanno Ackermann,
Carsten Rother, Michael Ying Yang, and Bodo Rosenhahn.
Consac: Robust multi-model fitting by conditional sample
consensus. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 4634–4643,
2020. 2, 5, 6, 7

[21] Jana Košecká and Wei Zhang. Video compass. In European
conference on computer vision, pages 476–490. Springer,
2002. 1

[22] Seokju Lee, Junsik Kim, Jae Shin Yoon, Seunghak
Shin, Oleksandr Bailo, Namil Kim, Tae-Hee Lee, Hyun
Seok Hong, Seung-Hoon Han, and In So Kweon. Vpgnet:
Vanishing point guided network for lane and road marking
detection and recognition. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1947–1955,
2017. 1

[23] José Lezama, Rafael Grompone von Gioi, Gregory Randall,
and Jean-Michel Morel. Finding vanishing points via point
alignments in image primal and dual domains. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 509–515, 2014. 2

[24] Haoang Li, Ji Zhao, Jean-Charles Bazin, Wen Chen, Zhe Liu,
and Yun-Hui Liu. Quasi-globally optimal and efficient van-
ishing point estimation in manhattan world. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 1646–1654, 2019. 2

[25] Jingchen Liu and Yanxi Liu. Local regularity-driven city-
scale facade detection from aerial images. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3778–3785, 2014. 1

[26] Luca Magri and Andrea Fusiello. T-Linkage: A continuous
relaxation of J-Linkage for multi-model fitting. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 3954–3961, 2014. 1, 2, 5, 6, 7

[27] Luca Magri and Andrea Fusiello. Fitting multiple heteroge-
neous models by multi-class cascaded t-linkage. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 7460–7468, 2019. 2, 5, 6, 7

9

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

ICCV
#7103

ICCV
#7103

ICCV 2021 Submission #7103. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

[28] Faraz M Mirzaei and Stergios I Roumeliotis. Optimal esti-
mation of vanishing points in a manhattan world. In 2011
International Conference on Computer Vision, pages 2454–
2461. IEEE, 2011. 2

[29] Long Quan and Roger Mohr. Determining perspective struc-
tures using hierarchical hough transform. Pattern Recogni-
tion Letters, 9(4):279–286, 1989. 2

[30] Srikumar Ramalingam and Matthew Brand. Lifting 3d man-
hattan lines from a single image. In Proceedings of the IEEE
International Conference on Computer Vision, pages 497–
504, 2013. 1

[31] Grant Schindler and Frank Dellaert. Atlanta world: An
expectation maximization framework for simultaneous low-
level edge grouping and camera calibration in complex man-
made environments. In Proceedings of the 2004 IEEE Com-
puter Society Conference on Computer Vision and Pattern
Recognition, 2004. CVPR 2004., volume 1. IEEE, 2004. 1

[32] Grant Schindler et al. An expectation maximization frame-
work for simultaneous low-level edge grouping and camera
calibration in complex man-made environments. In Proceed-
ings of CVPR, volume 2, 2004. 2

[33] Jefferey A Shufelt. Performance evaluation and analysis of
vanishing point detection techniques. IEEE transactions on
pattern analysis and machine intelligence, 21(3):282–288,
1999. 2

[34] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob
Fergus. Indoor segmentation and support inference from
rgbd images. In European conference on computer vision,
pages 746–760. Springer, 2012. 5

[35] Gilles Simon, Antoine Fond, and Marie-Odile Berger.
A-contrario horizon-first vanishing point detection using
second-order grouping laws. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages 318–
333, 2018. 5, 6, 7

[36] Jean-Philippe Tardif. Non-iterative approach for fast and ac-
curate vanishing point detection. In 2009 IEEE 12th Inter-
national Conference on Computer Vision, pages 1250–1257.
IEEE, 2009. 2

[37] Zachary Teed and Jia Deng. Raft: Recurrent all-
pairs field transforms for optical flow. arXiv preprint
arXiv:2003.12039, 2020. 2

[38] Etienne Vincent and Robert Laganiére. Detecting planar ho-
mographies in an image pair. In ISPA 2001. Proceedings
of the 2nd International Symposium on Image and Signal
Processing and Analysis. In conjunction with 23rd Inter-
national Conference on Information Technology Interfaces
(IEEE Cat., pages 182–187. IEEE, 2001. 5, 6, 7

[39] Rafael Grompone Von Gioi, Jeremie Jakubowicz, Jean-
Michel Morel, and Gregory Randall. LSD: A fast line
segment detector with a false detection control. IEEE
transactions on pattern analysis and machine intelligence,
32(4):722–732, 2008. 1, 2, 5, 6

[40] Rui Wang, David Geraghty, Kevin Matzen, Richard Szeliski,
and Jan-Michael Frahm. Vplnet: Deep single view normal
estimation with vanishing points and lines. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 689–698, 2020. 1

[41] Yiliang Xu, Sangmin Oh, and Anthony Hoogs. A minimum
error vanishing point detection approach for uncalibrated
monocular images of man-made environments. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1376–1383, 2013. 2

[42] Menghua Zhai, Scott Workman, and Nathan Jacobs. Detect-
ing vanishing points using global image context in a non-
manhattan world. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5657–
5665, 2016. 2, 5, 6, 7

[43] Xiaodan Zhang, Xinbo Gao, Wen Lu, Lihuo He, and Qi Liu.
Dominant vanishing point detection in the wild with appli-
cation in composition analysis. Neurocomputing, 311:260–
269, 2018. 2

[44] Huizhong Zhou, Danping Zou, Ling Pei, Rendong Ying,
Peilin Liu, and Wenxian Yu. Structslam: Visual slam with
building structure lines. IEEE Transactions on Vehicular
Technology, 64(4):1364–1375, 2015. 1

[45] Yichao Zhou, Jingwei Huang, Xili Dai, Linjie Luo, Zhili
Chen, and Yi Ma. HoliCity: A city-scale data platform
for learning holistic 3D structures, 2020. arXiv:2008.03286
[cs.CV]. 5, 6, 7

[46] Yichao Zhou, Haozhi Qi, Jingwei Huang, and Yi Ma.
Neurvps: Neural vanishing point scanning via conic convo-
lution. In Advances in Neural Information Processing Sys-
tems, pages 866–875, 2019. 2, 3, 4, 5, 6, 8

[47] Yichao Zhou, Haozhi Qi, Yuexiang Zhai, Qi Sun, Zhili Chen,
Li-Yi Wei, and Yi Ma. Learning to reconstruct 3d manhattan
wireframes from a single image. In Proceedings of the IEEE
International Conference on Computer Vision, pages 7698–
7707, 2019. 1, 5, 6, 7

[48] Zihan Zhou, Farshid Farhat, and James Z Wang. Detecting
dominant vanishing points in natural scenes with application
to composition-sensitive image retrieval. IEEE Transactions
on Multimedia, 19(12):2651–2665, 2017. 5, 6, 7

10

