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Abstract

Being able to infer 3D structures from 2D images with
geometric principles, vanishing points have been a well-
recognized concept in the 3D vision for a long time. It has
been widely used in autonomous driving, SLAM, and AR/VR
for applications such as road direction estimation, camera
calibration, and camera pose estimation. Existing vanish-
ing point detection methods often need to trade off among
robustness, precision, and inference speed. In this paper,
we introduce VaPiD, a novel neural network-based rapid
Vanishing Point Detector that achieves unprecedented effi-
ciency with learned vanishing point optimizers. The core
of our method contains two components: a vanishing point
proposal network that gives a set of vanishing point propos-
als as coarse estimations; and a neural vanishing point op-
timizer that iteratively optimizes the positions of the vanish-
ing point proposals to achieve high-precision levels. Exten-
sive experiments on both synthetic and real-world datasets
show that our method provides competitive, if not better,
performance as compared to the previous state-of-the-art
vanishing point detection approaches while being signifi-
cantly faster.

1. Introduction
Vanishing points are defined as the intersection points of

3D parallel lines when projected onto a 2D image. Van-
ishing points provides geometry-based method to infer the
3D structure of a scene, which underpin a variety of appli-
cations, such as camera calibration [21, 7], facade detec-
tion [25], 3D reconstruction [15], 3D scene structure anal-
ysis [16, 40], 3D lifting of lines [30], SLAM [44], and au-
tonomous driving [22].

Efforts have been made on vanishing point detection in
the past decades. Traditionally, vanishing points are de-
tected in two stages. In the first stage, a line detection al-
gorithm, such as probabilistic hough transformation [18] or
LSD [39], is used to extract a set of line segments. In the
second stage, a line clustering algorithm [26] or a voting
procedure [3] is used to estimate vanishing points from the

(a) Input image (b) Our results

0.088° 0.090°

0.209°

Figure 1: We propose a novel vanishing point detection
network VaPiD, which runs in real-time with high accu-
racy. Top: Speed-accuracy curves compare with state-of-
the-art methods on the SU3 dataset [47]. Dotted horizontal
lines labeled with nε represent the nth smallest angle errors
that numerically can be represented by 32-bit floating point
numbers when computing arccos〈d1,d2〉. Bottom: visual
results show that our vanishing points detection is able to
handle complex scene structures. Lines group in the same
color indicates a predicted vanishing point.

line segments. The main weakness of this pipeline is that
the extracted lines might be noisy and have many outliers,
leading to spurious results after clustering or voting. To
make algorithms more robust, people can resort to priors
for the underlying scenes, such as Manhattan worlds [4] or
Atlanta worlds [31] that are common in man-made environ-
ments. Nevertheless, additional assumptions complicate the
setting of the problem, and the algorithms might not work
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well when these assumptions do not hold.
Recent CNN-based deep learning approaches [6, 5, 43,

42, 19, 46] has demonstrated the robustness of data-driven
approach. In particular, NeurVPS [46] provides a frame-
work to detect vanishing points in an end-to-end fashion
without relying on external heuristic line detectors. They
propose conic convolution to exploit the geometry prop-
erties of vanishing points by enforcing the feature extrac-
tion and aggregation along the structural lines of vanishing
point candidates. This approach achieves satisfactory per-
formance, but it is inefficient as it requires evaluating all
possible vanishing points in an image (1FPS is reported).
In contrast, most vanishing point applications are required
to run in an online fashion in practice.

To this end, we introduce VaPiD, a novel end-to-end
rapid vanishing point detector that significantly boosts the
model efficiency using learned optimizers. VaPiD consists
of two components: (1) a vanishing point proposal network
(VPPN) that takes an image and returns a set of vanishing
point proposals. It harnesses a computation sharing scheme
to efficiently process dense vanishing point anchors; (2) a
neural vanishing point optimizer (NVPO) that takes each
proposal as input and optimizes for its position with a neu-
ral network in an iterative fashion. In each iteration, it re-
fines the vanishing points by regressing the residuals and
updating the estimates. Our approach can be considered as
learning to optimize. Compared to the previous coarse-to-
fine method [46], our optimizing scheme avoids enumerat-
ing all possible vanishing point candidate positions, which
largely improves the model efficiency.

We comprehensively evaluate our method on four pub-
lic datasets including one synthetic dataset and three real-
world datasets. VaPiD significantly outperforms previous
works in terms of both speed and accuracy. Remarkably, on
the synthetic dataset, the cosine of the median angle error
(0.088°) is close to the machine epsilon of 32-bit floating-
point numbers1, which indicates that VaPiD pushes the de-
tection accuracy to the limitation of the numerical num-
bers. With fewer refinement iterations, VaPiD runs at 26
frames per second while maintaining a median angle error
of 0.145° for 512×512 images with 3 vanishing points.

2. Related Work
Vanishing Point Detection. Early work represents van-
ishing points using unit vectors on a sphere (the Gaus-
sian sphere), which reveals the link between the 2D van-
ishing point and the 3D line direction [3, 29]. Modern
line-based vanishing point detection approaches first detect
the line segments, which are then used to cluster vanish-
ing points [41, 26, 27, 20]. Among them, LSD [39] with

1The cosine error is the dot product of the direction represented by
predicted vanishing points and ground truth vanishing points. It limits how
accurate you can represent a vanishing point with floating-point numbers.

J-linkage [36, 10] is probably the most widely used algo-
rithms in this category. These methods work well on im-
ages with strong line signals, but are not robust to noises
and outliers [33]. Therefore, structure constraints such as
orthogonality properties are often used to increase the ro-
bustness. For example, the “Manhattan world” assumption
is made with three mutually orthogonal vanishing direc-
tions [8, 28, 24]. Similarly, under an “Atlanta world” as-
sumption [32], the vanishing points are detected in a com-
mon horizon line [2, 23, 41].

Recently, we see the success of CNN-based research on
vanishing point detection. Chang et al. [6] detects vanish-
ing points in the image frame by classifying over image
patches. Zhai et al. [42] learns the prior of the horizon its
associated vanishing points in human-made environments.
Kluger et al. [19] projects lines in the image to Gaussian
sphere and regresses directly on the spherical image to find
the vanishing points. The aforementioned approaches all
use the neural networks as regressors. Zhou et al. [46] in-
troduces the conic convolutions that can make use of the
vanishing point-related geometry cues. Our approach also
utilizes conic convolutions. However, we employ a com-
putation sharing scheme that enables conic convolutions to
process large-scale vanishing points.

Learning to Optimize. Using neural network layers to
mimic the steps of optimization algorithms has shown to be
effective in many computer vision tasks. Gregor et al. [14]
first explored training a neural network as the approxima-
tion of an optimizer for sparse coding. This approach has
been further adopted to image super-resolution [9], novel
view synthesis [11] and optical flow [37]. We follow this
line of works and train a neural network that iteratively esti-
mates the residuals and updates the vanishing points. How-
ever, different from previous works, our network optimizes
the vanishing points in a rotation invariant manner as our
optimization space is a spherical space.

3. Method
3.1. Background

Geometry Representation of Vanishing Points. In this
work, we adopt the Gaussian sphere representation of van-
ishing points [3]. The position of a vanishing point v =
[vx, vy]T ∈ R2 in an image encodes a set of parallel 3D
lines with direction d = [vx−cx, vy−cy, f ]T ∈ R3, where
[cx, cy]T ∈ R2 is the optical center and f is the focal length
of the camera. Representing vanishing points with d in-
stead of v avoids the degenerate cases where the projected
lines are parallel in 2D. In addition, we are now able to use
the angle between two 3D unit vectors as the distance be-
tween two vanishing points. This serves as a natural metric
for evaluating the accuracy of detected vanishing points. In
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Figure 2: The architecture of our proposed VaPiD. It incorporates three major components: (1) a backbone network for
feature extraction from the input image; (2) a vanishing point proposal network (VPPN) to generate reliable vanishing point
proposals with efficient conic convolutions; (3) a weight sharing neural vanishing point optimizer (NVPO) to refine each
vanishing point proposal to achieve high accuracy. Note that our network is trained in an end-to-end fashion.

this paper, we use d to represent the counterpart of v in the
Gaussian sphere.

Conic Convolutions. The conic convolution [46] is de-
signed to extract features for vanishing point detection by
rotating the convolution kernel towards a vanishing point
candidate. Specifically, a conic convolution takes a fea-
ture map and a convolution center (the position of vanishing
point candidates) on the image as input, and outputs another
feature map. Mathematically, a 3×3 conic convolution op-
erator “∗” is defined as:

(F ∗w)(p |v)

=

1∑
i=−1

1∑
j=−1

w(i, j) · F
(
p +Rv−p ·

[
i
j

])
,

(1)

where F is the input feature map, w is a 3×3 trainable con-
volution filter, p ∈ R2 is the coordinates of the output pixel,
v is the convolution center that is set to be the candidate
positions of vanishing points, and Rv−p is a 2D rotation
matrix that rotates the x-axis to the direction of v − p. In
other words, conic convolution is a structured convolution
operator that always rotates the filters towards the vanish-
ing point v regardless of the output pixel coordinates p. In-
tuitively, conic convolution can be understood as a way to
check whether there are enough lines shooting from a van-
ishing point.

3.2. Overview

Fig. 2 illustrates our overall workflow. VaPiD takes an
image as input and predicts the associated vanishing points.
Specifically, our vanishing point proposal network (VPPN)
generates a set of coarse vanishing point proposals using
the feature map from the backbone network. The neural

vanishing point optimizer (NVPO) then optimizes each pro-
posal individually for a fixed number of iterations. We in-
troduce the designs of the VPPN in Sec. 3.3 and the NVPO
in Sec. 3.4. Finally, we describe the loss functions for train-
ing both modules in Sec. 3.5.

3.3. Vanishing Point Proposals

The goal of the vanishing point proposal network
(VPPN) is to produce a set of vanishing point proposals ef-
ficiently. Let {vi}Ni=1 be an anchor point grid of sizeN on a
unit sphere. The vanishing point proposal network classifies
each anchor point to determine whether there is a vanishing
point around it. We employ a point-based non-maximum
suppression (PNMS) on the score map of the anchor grid to
generate the final candidates.

Efficient Conic Convolutions. Given a vanishing point
anchor vi, the conic convolution centered at vi relates the
vanishing point to its line features. However, the conic con-
volution needs to process each vanishing point anchor sep-
arately, which is slow when N is large. To solve this prob-
lem, we propose the efficient conic convolution operator to
quickly compute N feature maps by reusing some internal
results with approximations.

Our key observation is that the rotation matrix R(·) in
Equ. 1 is the only factor that varies regarding the same pixel
p. For a dense anchor point grid, the computation is re-
dundant as multiple anchors may share similar rotation an-
gles. Therefore, our method first approximates R(v−p) by
K rotation matrices {Rk}K−1k=0 , where Rk is a 2D rotation
matrix that rotates 2πk

K rad. We then pre-compute the fea-
ture map Gk by convolving the input feature map with the
kernel rotated by R−1k . After that, we can efficiently ap-
proximate the vanilla conic convolutions by retrieving the

3
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(a) Confidence score map (b) Vanishing point proposals w/ PNMS

Figure 3: Illustration of point-based non-maximum sup-
pression (PNMS). (a) The confidence score map of a dense
vanishing point anchor grid predicted by our efficient conic
convolution networks. Higher scores are visualized as solid
spheres with larger radius. (b) Top-3 vanishing point pro-
posals after PNMS.

features from the pre-computed feature maps with the clos-
est rotation angles. This process can be described with the
following formulas:

(F ∗w)(p |v) (2)

≈
1∑

i=−1

1∑
j=−1

w(i, j) · F
(
p + Rkv,p

[
i
j

])
(3)

≈
1∑

i=−1

1∑
j=−1

w

(
R−1kv,p

·
[
i
j

])
F
(
p +

[
i
j

])
(4)

≈
(
F ⊗ ROTATEKERNEL(w,R−1kv,p

)
)

(p) (5)
.
= Gkv,p(p),

where kv,p = arg maxk Tr(Rk · RTv−p) is the index of the
closest rotation matrix, ROTATEKERNEL(w,R−1kv,p

) rotates
the convolutional kernel w with 2D rotation matrix R−1kv,p

,
“⊗” is the symbol of a regular convolution, and {Gk}Kk=1 is
the set of pre-computed feature maps with 2D regular con-
volutions. Here, (2)-(3) is the step of rotation quantization,
(3)-(4) is integration by substitution, and (4)-(5) is accord-
ing to the definition of rotation and convolution. Once we
obtain the feature maps for all the anchor points, we pass
them into a fully connected layer with a Sigmoid activation
to obtain the classification scores.

To compute the feature maps for a dense vanishing point
grid of size N , the vanilla conic convolutions require N
times network forwards, while the proposed efficient conic
convolutions only requireK times network forwards, where
K is the number of quantized rotation matrices. We find
that setting K = 64 � N can already give good approx-
imations. In addition, efficient conic convolution only re-
quires regular 2D convolution instead of deformable convo-
lutions as used in [46], which in practice is much faster due
to tremendous engineering efforts in modern deep learning

frameworks.

Vanishing Point Non-Maximum Suppression. The
dense score maps tend to be smooth. To remove dupli-
cated proposals, we adopt a point-based non-maximum sup-
pression (PNMS) approach, inspired by the widely adopted
NMS techniques in object detection [12]. PNMS keeps the
vanishing points with the greatest scores locally and sup-
presses its neighboring vanishing points within an angle
threshold Γ. Figure 3 illustrates the effect of PNMS. After
PNMS, we select the top-K ranked anchors as our propos-
als.

3.4. Learning to Optimize Vanishing Points (NVPO)

The goal of the NVPO is to fine-tune the vanishing point
positions starting from the initial proposal d(0). Our NVPO
emulates the process of iterative optimization and produces
a sequence of estimates

{
d(1), . . . ,d(T )

}
. In each itera-

tion, it takes the image feature map and the current vanish-
ing point position d(t) to regress an update vector ∆(t) with
the conic convolution network [46]. It then applies the up-
date vector to the current vanishing point and obtains the
next estimate: d(t+1) = d(t) ⊕ ∆(t). For each vanishing
point proposal, we use T iterations. The network weights of
the NVPO are shared across all the refinement iterationAs
we only process a small number of vanishing points and,
we adopt the vanilla conic convolutions in our NVPO. We
provide the network structure details in the supplementary
materials.

We note that the update is applied in a local system de-
fined by the position of vanishing points to avoid the prob-
lem of Gimbal lock, as illustrated in Fig. 4. We first write
out d(t) and ∆(t) using the spherical coordinate:

d(t) =
[
cos θ(t) sinφ(t) sin θ(t) sinφ(t) cosφ(t)

]T
∆(t) =

[
cos δθ(t) sin δφ(t) sin δθ(t) sin δφ(t) cos δφ(t)

]T
We then define the local system (X ′, Y ′, Z ′), where the Z ′-
axis corresponds d(t) while keeping Z-axis lies in the Y ′Z ′

plane. The update vector is then applied to the current esti-
mate in (X ′, Y ′, Z ′). This process can be viewed as a rota-
tion transformation

d(t+1) =
[
e(t) d(t) × e(t) d(t)

]
·∆(t),

where e(t) = [− sinφ(t), cosφ(t), 0]T .
An important property of such update scheme is rota-

tional equivariant. If one rotates the vanishing points about
the optical center, the refined vanishing points should ro-
tate the same. This property is guaranteed by our method
as the conic convolutions centered at the vanishing points is
by nature rotation invariant.

Although the NVPO still uses conic convolution to com-
pute the features, our approach is more efficient compared
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X

Y

Z

X 0

Y 0

Z 0

(a) Local system (b) Update operator

�(t)

✓(t)

�(t)

d(t+1)d(t)

Figure 4: Illustration of our update operator. (a) Given the
camera system (X,Y, Z) and the current vanishing point
position d(t), we define the local system (X ′, Y ′, Z ′). (b)
We obtain the refined vanishing point d(t+1) by applying
the update vector ∆(t) in the local system.

to NeurVPS [46]. Specifically, NeurVPS samples candi-
date positions near the current estimates and uses conic con-
volutional networks to classify if each candidate is near a
real vanishing point. Even with a coarse-to-fine strategy,
it still needs to forward the conic convolutional networks
144 times per vanishing point in order to reach high preci-
sion levels, which largely limits the model efficiency. We
instead adopt a learning to optimize methodology and di-
rectly regress the residuals of the vanishing points with our
conic convolutional networks. Such a design greatly accel-
erates the overall process. For instance, we can now achieve
better performance than NeurVPS with only a few net-
work forwards. Alternatively, our approach can be viewed
as solving for equilibrium points: our update formulation
d(t+1) = d(t) ⊕ ∆(t) = f(d(t)) can be viewed as a fixed
point iteration method, but is learned.

3.5. Loss Functions

For training VPPN, we assign a binary class label for
each vanishing point anchor, where only the anchors with
the closest angle to a ground truth are assigned with positive
labels. This gives:

Lcls =

N∑
i=1

BCE(li, l
∗
i ), (6)

where li is the classification score for the i-th anchor and
l∗i is the assigned label. For training NVPO, we sample
M anchors around the ground truths as the initial states and
supervise NVPO with an angular loss between the estimates
and the ground truths for each step:

Lref =

M∑
i=1

T∑
t=1

arccos(|〈vti ,v∗i 〉|). (7)

We jointly train both modules with the final loss:

L = Lcls + λLref , (8)

where λ is a hyper-parameter.

4. Results
4.1. Datasets

We conduct empirical studies on the following datasets.
SU3 Wireframe [47]. SU3 Wireframe is a photo-realistic
synthetic urban scene dataset generated with a procedural
building generator. It contains 22,500 training images and
500 validation images. The dataset assumes “Manhattan
world” scenes, where each image has exact three mutual
perpendicular vanishing points. The ground truths are cal-
culated from the CAD models, which are accurate enough
for a systematic investigation of our method.
Natural Scene [48]. Collected from AVA and Flickr, this
dataset contains images of natural scenes where the authors
pick only one dominant vanishing point as the ground truth.
We adopt the data split from [46] that divides the images
into 2,000 training samples and 275 test samples.
HoliCity [45]. Holicity is a city-scale real-world dataset
with rich structural annotations. The ground truths are ac-
curately aligned with the CAD model of downtown London.
The numbers of vanishing points range from one to six for
each scene. We adopt the standard split that contains 45,032
training samples and 2,504 validation samples.
NYU-VP [20]. This dataset is manually labeled based on
the NYU Depth V2 dataset [34]. It contains 1,449 indoor
images. While most images show three ground truth van-
ishing points, it ranges from one to eight. We follow [20]
and split the dataset into 1,000 training samples, 224 vali-
dation samples, and 225 testing samples.

4.2. Experiment Setups

Evaluation Metrics. We evaluate our method using mean
and median angle errors. To better inspect our method un-
der various precision levels, we also make use of angle ac-
curacy (AA) metrics [46], where AAα is defined as the area
under the angle accuracy curve between [0, α] divided by α.
For NYU-VP dataset, we apply the Hungarian method to
match the vanishing points following the authors and adopt
the AUC metric provided by the authors.
Baselines. We compare our method against traditional ro-
bust fitting methods J-Linkage [10], T-Linkage [26], Se-
quential RANSAC [38], Multi-X [1], MCT [27], and a re-
cent learning-based method CONSAC [20] based on line
segments extracted with LSD [39]. For vanishing point de-
tection methods, we compare our method against traditional
methods VPDet [48] and Simon et al. [35]. For learning-
based vanishing point detection methods, we compare our
method against Zhai et al. [42], Kluger et al. [19] and pre-
vious state-of-the-art method NeurVPS [46].

4.3. Implementation Details

We implement our network in PyTorch. We resize the
input images to 512×512 and uniformly sample an anchor

5
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grid of size N = 1, 024 using Fibonacci lattice [13]. For
generating vanishing point proposals, we set the PNMS
threshold Γ = 15° and keep the top-K proposals if the
dataset assumes a fixed number of vanishing points K, oth-
erwise we set K = 6. For vanishing point refinement, we
set the estimation cap S = 20°, and compute losses for
T = 8 refinement steps. We use Adam optimizer [17] with
a learning rate of 3× 10−4 to train the network. We set the
trade-off parameter λ = 1. Please refer to the supplemen-
tary material for more training details.

4.4. Results on Synthetic Datasets

We show our results on the SU3 Wireframe dataset [47]
in Tab. 1, and plot the AA curves in Fig. 5. With simi-
lar speed, VaPiD achieves an order of magnitude improve-
ment over the naive CNN classification and regression base-
lines. VaPiD also significantly outperforms the traditional
line-based J-Linkage clustering method [10]. Note that the
synthetic dataset contains many sharp edges and long lines,
which by nature favors the line-based detectors. These im-
provements validate the efficacy of geometry-inspired net-
work designs such as conic convolutions and efficient conic
convolutions. We also observe that our method runs 17
times faster than our strong baseline NeurVPS [46], while
achieving better accuracies on all metrics. This indicates
that our learning to optimize scheme can greatly improve
the model efficiency upon the coarse-to-fine enumerating
strategy used in NeurVPS.

Remarkably, VaPiD is trained with angular metrics, but
achieves a median angle error of 0.089° with float32. Here
we note that 1 − cos(0.089°) ≈ 1.2 × 10−6, which is very
close to the machine epsilon of float322. This fact indicates
that the detection accuracy of VaPiD is more likely to be
bounded by numerical errors rather than the detection pre-
cision. This is also reflected in the stepped curves in Fig. 5.

4.5. Results on Real-world Datasets

Comparisons on Natural Scene. We show the compar-
isons on the Natural Scene dataset [48] in Tab. 2 and
Fig. 6. Our method significantly outperforms the naive
CNN classification and regression baselines as well as the
contour-based clustering algorithm VPDet [48] in all met-
rics. Our method also outperforms the strong baseline
NeurVPS [46] in most of the metrics. We note that the
Natural Scene [48] is captured by different cameras with
different focal lengths. Such data favors enumeration-based
methods over the optimization-based methods especially at
a tighter angle threshold (i.e. below 1°). Nonetheless, We
highlight that for images with a dominant vanishing point,
VaPiD can run in real-time (43FPS) while maintaining com-
petitive performance.

2The machine epsilon of float32 is ε ≈ 1.2× 10−7

AA.2° AA.5° AA1° Mean Median
CNN-reg 2.03 6.48 15.02 2.077° 1.481°
CNN-cls 2.17 9.10 23.71 1.766° 0.984°
J-Linkage [10] 27.89 48.07 62.34 3.888° 0.209°
NeurVPS [46] 47.59 74.26 86.35 0.147° 0.090°
VaPiD 48.33 74.79 86.66 0.145° 0.088°

Table 1: Comparisons of mean, median angle errors and the
angular accuracies of 0.2°, 0.5°, 1° with baseline methods
on SU3 dataset [47].

AA1° AA2° AA10° Mean Median
CNN-reg 2.4 9.9 58.8 5.09° 3.20°
CNN-cls 4.4 14.5 62.4 5.80° 2.79°
VPDet [48] 18.5 33.0 60.0 12.6° 1.56°
NeurVPS [46] 29.1 50.3 85.5 1.83° 0.87°
VaPiD 24.6 50.5 87.4 1.26° 0.87°

Table 2: Comparisons of mean, median angle errors and the
angular accuracies of 1°, 2°, 10° with baseline methods on
Natural Scene dataset [48].

AA1° AA2° AA10° Mean Median
NeurVPS [46] 18.2 31.7 62.1 8.32° 1.78°
VaPiD 22.1 39.6 75.4 3.00° 1.19°

Table 3: Comparisons of mean, median angle errors and the
angular accuracies of 1°, 2°, 10° with baseline methods on
HoliCity dataset [45].

AUC10° Supervised
Multi-X [1] † 41.3 no
MCT [27] † 47.0 no
Sequential RANSAC [38] † 53.6 no
T-Linkage [26] † 57.8 no
Kluger et al. [19] 61.7 yes
Simon et al. [35] 62.1 no
Zhai et al. [42] 63.0 yes
CONSAC [20] † 65.0 yes
VaPiD 69.5 yes

Table 4: Comparisons of AUC values at 10° with baseline
methods on NYU-VP dataset [20]. Supervised methods are
noted as “yes” in the last column. † Method requires addi-
tional line segment detector such as LSD [39].

Comparisons on HoliCity. We compare our method and
NeurVPS [46] on a challenging real-world dataset, HoliC-
ity [45]. The dataset embraces an Atlanta world scene
assumption and contains images with various numbers of
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Figure 5: Angle accuracy curves and speed-accuracy comparisons for different methods on SU3 wireframe dataset [47].
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Figure 6: Angle accuracy curves and speed-accuracy comparisons for different methods on Natural Scene dataset [48]

vanishing points. Our method significantly outperforms
NeurVPS. The performance gain partly originates from
more vanishing points being successfully retrieved. This
shows that our VPPN can adapt to more complex scenes.
Thanks to our efficient conic convolutions, we can now pro-
cess a much denser anchor grid to produce fine-grained pro-
posals.

Comparisons on NYU-VP. We compare against recent
robust fitting methods CONSAC [20], T-Linkage [26], Se-
quential RANSAC [38], Multi-X [1], MCT [27], and van-
ishing point detection methods Simon et al. [35], Zhai et
al. [42] and Kluger et al. [19] on the NYU-VP dataset [20],
and show the results in Tab. 4. To fairly compare with the
baselines, we follow [20] and use the Hungarian method to
match the predictions and the ground truths. We find that
supervised methods perform better than traditional methods
in general, and our method outperforms all baselines by a
large margin. Compared to robust fitting methods, VaPiD
does not rely on prior line detectors. Instead, thanks to our
geometry-inspired structures, VaPiD can extract meaning-
ful and robust line features from raw images intrinsically
via end-to-end supervised learning. Compared to recent
learning-based vanishing point detectors, VaPiD can make
use of rich geometry cues, i.e. vanishing point-related line
features, to accurately locate the vanishing points.

Rec2° Rec4° Rec6° Mean Median
VPPN-ECC 33.20 72.13 89.53 0.554° 0.101°
VPPN 56.20 95.67 99.00 0.146° 0.089°

Table 5: Ablation study on the efficient conic convolutions.
“VaPiD-ECC” denotes the baseline without using our pro-
posed efficient conic convolutions.

Qualitative Results. We visualize our detected vanishing
points on Holicity [45] in Figure 4. VaPiD generalizes well
to different types of scenes and is robust to the perspective
distortions. Thanks to the VPPN, our method can handle
the input images with various numbers of vanishing points
(e.g. 2 for the second-row left panel, 3 for the third-row
left panel, and 4 for the second-row right panel) without
making assumptions on the geometry priors. We can also
find cases where our predictions are more reasonable than
ground truths (orange in the second-row right panel).

4.6. Ablations

In this section, we perform a set of ablation experiments
to investigate the effect of each component in our VPPN
and NVPO respectively. All experiments are conducted on
SU3 Wireframe [47] to better analyze our method, as we
can eliminate the labeling errors using synthetic images.
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(a) Input (c) Ground truth(b) VaPiD result (a) Input (c) Ground truth(b) VaPiD result

Figure 7: Visualization of our vanishing point detection results on various types of scenes. For each of the vanishing point,
we visualize it using a group of 2D lines in the same color. Better view in color.

AA.1° AA.5° AA2° Mean Med. FPS
NVPO 4× 15.1 62.1 89.0 0.227° 0.145° 26
NVPO 6× 24.3 72.7 92.4 0.157° 0.096° 22
NVPO 8× 26.6 74.8 93.0 0.145° 0.088° 17
NVPO 12× 27.5 75.2 93.2 0.141° 0.086° 13
NVPO 16× 27.6 75.3 93.2 0.140° 0.086° 10
NVPO 24× 28.1 75.6 93.3 0.139° 0.085° 7

Table 6: Ablation study on the number of refinement steps.
(T×) means T refinement steps during the inference.

The Effect of Efficient Conic Convolutions. The effi-
cient conic convolutions are the core of our VPPN. In Tab. 5,
we demonstrate the effectiveness of the efficient conic con-
volutions by investigating a variant of VPPN (VPPN-ECC)
that replaces the efficient conic convolutions with vanilla
conic convolutions but has a similar computation cost. As
the goal of our VPPN is to pinpoint all of the vanish-
ing point proposals, we adopt a recall metric, where Recα

means the fraction of the ground truths that are successfully
retrieved by one of the vanishing point proposals within
the threshold of α. In Tab. 5, we observe that VPPN out-
performs the VPPN-ECC baseline on all metrics. We note
that the average closest neighbor angle of our anchor grid is
4.3°. We find that VPPN achieves 99% recall with a thresh-
old of 6°, where the VPPN-ECC variant still struggles at
90%. This validates the efficiency of the computation shar-
ing scheme in our efficient conic convolutions.

Convergence of the Learned Optimizer. In the training
stage, we compute losses for a fixed refinement steps of 8.
To investigate the convergence of our NVPO, we apply dif-
ferent refinement steps during inference and show the re-
sults in Tab. 6. As the refinement step increases, it is clear
that our NVPO gradually produces better vanishing point
estimates, and can converge to a fixed point. We also make
two key observations: (1) our method runs at nearly real-
time (26FPS) with 4 refinement steps, yet is still accurate
enough (with a 0.15° median error) for most of the down-
stream applications; (2) even with a saturated 24 refinement
steps, our method still runs 7 times faster than previous
state-of-the-art [46] while being more accurate.

5. Conclusion

This paper presents a novel vanishing points detection
approach based on neural networks that achieves state-of-
the-art performance while being significantly faster than
previous works. Our method contains two designated mod-
ules: a novel vanishing points proposal network and a neu-
ral vanishing point optimizer. Our key insight is to use
the computation sharing to accelerate massive convolution
operations, and embrace a learning to optimize method-
ology that progressively learns the residual of the objec-
tives. In future work, we will study how to combine VaPiD
with downstream applications such as scene understanding
and camera pose estimation. It is also worth investigating
whether implementing our neural optimizer with a deep im-
plicit layer can lead to even better efficiency.
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