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Figure 1. Our general purpose motion prior consists of a latent space of human motions and is learned using a hierarchical
motion variational autoencoder (HM-VAE). Our approach is task-generic and can be directly adopted to a wide range of
applications. Left: Motion interpolation and completion can be accomplished by traversing the latent space. Right: Noisy
pose estimation can be refined by projecting noisy inputs into our latent space and decoding back. And a latent vector in the
learned latent space is corresponding to a valid motion sequence.

Abstract
A deep generative model that describes human motions

can benefit a wide range of fundamental computer vision
and graphics tasks, such as providing robustness to video-
based human pose estimation, predicting complete body
movements for motion capture systems during occlusions,
and assisting key frame animation with plausible move-
ments. In this paper, we present a method for learning com-
plex human motions independent of specific tasks using a
combined global and local latent space to facilitate coarse
and fine-grained modeling. Specifically, we propose a hi-
erarchical motion variational autoencoder (HM-VAE) that
consists of a 2-level hierarchical latent space. While the
global latent space captures the overall global body motion,
the local latent space enables to capture the refined poses of
the different body parts. We demonstrate the effectiveness of
our hierarchical motion variational autoencoder in a vari-
ety of tasks including video-based human pose estimation,
motion completion from partial observations, and motion
synthesis from sparse key-frames. Even though, our model
has not been trained for any of these tasks specifically, it
provides superior performance than task-specific alterna-

tives. Our general-purpose human motion prior model can
fix corrupted human body animations and generate com-
plete movements from incomplete observations.

1. Introduction

The modeling of human motions is a core component for
many vision tasks, including pose estimation, action recog-
nition, motion synthesis, and motion prediction. Several
recent work have demonstrated new capabilities for gener-
ating complex body movements and capturing motion from
unconstrained videos [23, 21, 55, 5, 8, 37, 20, 36]. While ro-
bustness and accuracy is constantly evolving for these meth-
ods, highly challenging scenes, occlusions, and body poses
can still result in corrupted animations and noise.

Conventional techniques for reducing artifacts, include
temporal filtering [19], inverse kinematics [51, 39, 10] and
statistical human motion priors [48, 18, 25, 2]. While ef-
fective in reducing unwanted jitters and implausible poses,
these methods do not generalize well to complex motions
and the results are often inaccurate w.r.t. the ground truth.

To address this challenge, deep learning-based motion
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priors were proposed which are particularly effective in rep-
resenting complex motion variations [16, 15, 23, 31]. These
priors are generally designed for predetermined tasks, such
as 3D pose estimation from a video, and a common prob-
lem is to be able to cover all possible input cases during
training, such as occlusions, motion blur, etc. Ideally, we
could build a prior model that describes the space of plausi-
ble human body movements, independently of the applica-
tion and simply plug this model into any system. Training
such model would simply consist of collecting high-quality
motion capture data (task-generic), instead of fitting for ex-
ample 3D models to an image (task-specific).

We introduce a generalized motion prior, that learns
complex human body motions from high-fidelity motion
capture data [32]. Similar to the work of [54] who devel-
oped a deep optimized prior for 3D modeling, our prior
for motion is a general purpose one. We present a deep
generative model based on a joint global and local latent
space representation that can accurately capture the poses
of different body parts while also modeling the global cor-
relations across the body joints. Specifically, we adopt a
two-level hierarchical motion variational autoencoder (HM-
VAE) which maps the human motion to global and local
latent spaces simultaneously. Our HM-VAE model adopts
the recently proposed skeleton-aware architecture [1] and
defines the global and local latent spaces via direct pooling
and unpooling operations on the skeleton structure. While
our HM-VAE successfully models the local human motion,
we introduce an additional trajectory prediction component
to model global motions. Taking local joint positions as in-
put, our trajectory model estimates the root joint velocity
at each timestep, enabling us to recover human motions in
world space.

We show the generality and effectiveness of our human
motion prior on various applications. First, we show that
our task-generic model can refine human motions predicted
from video [23, 21] by mapping noisy predictions into our
motion prior latent space. We also demonstrate that our
model can perform motion completion given partial obser-
vations (e.g., the upper body motion only) or motion syn-
thesis given sparse keyframes. In both of these tasks, we
optimize for both the global and local latent variables to
match the partial observations and restore complete plausi-
ble motion sequences. While our model is not trained for
any of these tasks specifically, it outperforms task-specific
alternatives both qualitatively and quantitatively.

Our contributions are as follows. First, we present an ef-
fective task-generic motion prior model, that can improve
the performance of a wide range of applications. Second,
we propose a two-level hierarchical motion variational au-
toencoder (HM-VAE) that consists of a skeleton-aware ar-
chitecture, allowing it to accurately capture the local motion
of body parts and the global correlation between them. Fi-

nally, we introduce a trajectory prediction module to model
the global trajectory conditioned on the local body motion.

2. Related Work
Deep Learning Based Priors. The ability of deep neu-
ral networks to model data priors has sparked research in
a variety of domains. Deep Image Prior (DIP) [43] shows
that a generator network without any learning is an effec-
tive prior for image restoration. Given randomly initialized
weights, the neural network is able to perform image de-
noising or super resolution via optimization defined by a
task-dependent energy term and a regularizer. A similar
idea is proposed and validated in the video domain [26],
by training a network to mimic specific image operators in
a single test video, the learned video prior is able to elim-
inate temporal inconsistencies in various video processing
tasks. Besides discovering priors in the 2D domain, the
ability to capture 3D priors is also demonstrated in recent
works [12, 54]. Point2Mesh [12] randomly samples a fixed
vector and optimizes the network parameters to reconstruct
a mesh with geometric details and showcases the effective-
ness of self-prior. Deep Optimized Priors [54] propose to
learn a pre-trained prior first which then serves as initializa-
tion for optimizing both the latent vector and the decoder
parameters given a task-specific objective and regulariza-
tion loss. In this work, we investigate data-driven priors in
the human motion domain and validate the effectiveness of
our method by applying it to various human motion tasks
without explicitly training for any specific tasks.

Generative Motion Modeling. With the recent success
of learning based methods, several works have focused on
generative models for motion synthesis. Martinez et al. [33]
propose a recurrent neural network model for generating
future human motion by predicting future joint velocities
and adding them to previous joint positions. MT-VAE [53]
propose a probabilistic recurrent neural network method for
generating multiple future human motions. Aksan et al. [3]
propose to predict future human motion by exploiting the
kinematic structure in human bodies. Following the auto-
regressive generative model formulation, Motion Trans-
formers [27] are introduced to model the future pose distri-
bution along with a discrete pose representation, leveraging
the advantage of the Transformer [45] architecture. Motion-
VAE [29] models the future pose distribution given previous
pose using a variational autoencoder (VAE) [22] approach.
Normalizing flows is another category of generative models
recently applied to human motion modeling. MoGlow [14]
uses normalizing flows for motion modeling and achieve re-
alistic motion generation taking root trajectory as the con-
ditioning signal. Recent work also address the problem of
motion in-betweening from a generative modeling perspec-
tive. Long-term motion in-betweening [57] uses a genera-
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tive adversarial neural network (GAN) [9] approach to gen-
erate human motion given sparse key-frames. Robust Mo-
tion in-betweening [13] employs an LSTM to generate a
motion sequence given initial frames and end frames while
also allowing for motion variations. Here, we focus on ex-
tending VAEs to model long-term human motion. Our key
difference is to embed multiple frames of motions into a
hierarchical global and local latent spaces. Methods like
MotionVAE model motion in a per-frame basis while our
method maps a full motion sequence into a compact latent
space.

Motion Estimation From Videos. A multitude of
optimization-based [30, 6, 17], learning-based [41, 20], and
hybrid methods [24, 35] have been proposed to tackle the
problem of single-image 3D human pose estimation. Its
rapid progress has stimulated research interest on the long-
standing problem of extracting 3D human motion from
videos [4, 44, 50, 49, 11, 42, 34, 36, 40]. VIBE [27] uses
an LSTM to capture temporal information and introduce a
discriminator training strategy to ensure the predicted poses
lie in a valid manifold. MEVA [31] presents a coarse-
to-fine strategy where a valid motion sequence is first ex-
tracted conditioned on a latent vector and then refined uti-
lizing person-specific details. TCMR [7] focuses on avoid-
ing the temporal jitters that exist in the VIBE results and
proposes a strategy to explicitly leverage past and future
frames to achieve smoother results. Texture-based track-
ing [52] is shown to improve the motion stability during op-
timization. Foot contacts and physically-based models [38]
are also used for estimating realistic human motions from
videos. In this work, we are not aiming to design a spe-
cific 3D video pose estimation method. Instead, we show
that our human motion prior is capable of eliminating jitters
and noises that exist in the results of current state-of-the-art
methods. We demonstrate that our method can be applied
to any pose estimation methods and in our experiments we
outperform previous work both quantitatively and qualita-
tively.

3. Hierarchical Motion VAEs

The core of our method is a hierarchical motion varia-
tional autoencoder (HM-VAE) that models human motion
by jointly learning a local and global latent space. Specifi-
cally, given a motion sequence x ∈ RT×J×D, represented
as the D dimensional joint rotations in a fixed time window
of size T 1, we first learn an embedding of x into local and
global latent spaces represented by latent codes zl and zg re-
spectively. Assuming the latent space in the local and global

1In our experiments, we use the SMPL [30] skeleton hence the number
of joints J is 24 and we use the continuous 6D rotation representation [56],
hence D = 6.

levels are independent [28], we then model the probability
distribution of a motion sequence as:

p(x, z) = p(x|zl, zg)p(zl)p(zg). (1)

Our variational autoencoder adopts the recently pro-
posed skeleton-aware architecture [1] to facilitate learning
over the humanoid skeleton structure directly. Before we
discuss the details of our model, we first provide a brief
overview of the skeleton-aware architecture. We refer the
reader to the original paper for more details.

3.1. Background

The skeleton-aware architecture consists of three critical
components that we adopt in our model design: skeleton
convolution, skeleton pooling, and skeleton unpooling.

Skeleton Convolution. Given a motion sequence x,x ∈
RT×J×D, we denote y,y ∈ RT ′×J×D′

as the updated
features after a skeleton convolution operation. For each
bone i in the skeleton, the updated feature is calculated
as yi = 1

|Nd
i |

∑
j∈Nd

i
xj ∗W i

j + bij , where the symbol ∗
denotes a one dimensional temporal convolution operation
with the temporal filterW i

j ∈ Rk×D×D′
and bias bij ∈ RD′

.
D′ represents the number of temporal filters, k represents
the temporal kernel size, andNd

i represents the neighboring
bones of bone iwithin distance d. The distance between two
bones (j1, j2) is defined as the number of bones needed to
cross to reach j2 starting from j1 along the kinematic chain.
The skeleton convolution operation preserves the number of
edges J while downsampling the temporal dimension to T ′.

Skeleton Pooling. Skeleton pooling merges the features
of connected bones and extracts higher-level motion fea-
tures by reducing the spatial resolution of the input. The
pooling operation is applied to pairs of bones which are
connected by a joint with degree of 2. For example, the
thigh and calf which are connected by the knee. We recur-
sively search such bone pairs starting from the root node
(the hip), and merge their corresponding features using av-
erage pooling operation. As we perform pooling, the num-
ber of joints is reduced in subsequent layers of the net-
work. Given disjoint sets of pooling bones denoted as
{P (1), P (2), ..., P (m)}, the pooling operation is defined as

F ′i = Pool(Fj |j ∈ P (i)).

Skeleton Unpooling. The unpooling operation mirrors
skeleton pooling. Specifically, given the activation features
F defined on a bone b obtained by merging the bones (i, j),
unpooling simply replaces b with the bones i and j where
the new bone features are defined as Fi = F, Fj = F . The
number of bones is increased after the unpooling layer.

3
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Figure 2. Model Overview. Left: Model architecture. (We omit activation layers and temporal upsampling layers here for
simplicity.) Right: Illustration of receptive field in shallow (B1) and deep layers (B4).

3.2. Motion Prior Learning for Local Motion

Given a motion sequence x,x ∈ RT×J×D, our HM-
VAE consists of an encoder and a decoder as shown in Fig-
ure 2. The encoder learns the posterior distribution of the
local, zl, and global, zg latent spaces given data x:

q(zl, zg|x) = q(zl|fl(x))q(zg|fg(x)), (2)

where fl(x), fg(x) represent the motion features ex-
tracted from different layers in the encoder. Our VAE is
then trained by maximizing the modified Evidence Lower
BOund (ELBO) [22]:

log p(x) ≥ Eq(zl,zg|x)[log p(x|zl, zg)]−
βKL(q(zl|fl(x))||p(zl))−
βKL(q(zg|fg(x))||p(zg)), (3)

where q(zl, zg|x) is an encoder network that maps the input
x into the local and global latent spaces, p(x|zl, zg) is a
decoder network that maps latent variables back into the
input x, and p(zl) and p(zg) are assumed to be standard
normal distributions N (0, I).

Encoder. The encoder consists of four building blocks
B1, B2, B3, B4 where each building block is a combina-
tion of a skeleton convolution, skeleton pooling, and a
LeakyReLU activation layer. As shown in Figure 2, we
introduce a linear layer W ∈ RT ′d×2dh after B1 and B4,
mapping motion features of each corresponding block to a
latent space. While the shallow layer features Fl after B1

represent the local latent space, the deep layer features Fg

after B4 correspond to the global latent space. We enforce
a normal distribution on each latent space:
zl ∼ N (µl(Fl), σl(Fl)), zg ∼ N (µg(Fg), σg(Fg)). (4)

Decoder. The decoder has a symmetric architecture to the
encoder. Each building block in decoder consists of tempo-
ral upsampling, skeleton unpooling, skeleton convolution
and LeakyReLU activation layers. Given the latent codes
zl and zg , the decoder first maps them to features through
linear layers. Temporal upsampling and skeleton unpooling
operations are used to increase the number of timesteps and
bones gradually. The features obtained from the global la-
tent code after a series of temporal upsampling, skeleton un-
pooling and convolution are concatenated with the features
obtained from the local latent code. A final block of unpool-
ing and convolution operations are used to reconstruct the
original motion sequence x. We further add a forward kine-
matics layer proposed in [46] to convert x into joint posi-
tions P to define an additional joint position reconstruction
loss. Also, we convert the 6D rotation representation to the
rotation matrix R and use an additional reconstruction loss
defined on the rotation matrices. Overall, the reconstruction
loss used to train the decoder is defined as:

Lrec = L6d + Lrot + λLjoints, (5)

L6d =

T∑
t=1

||x′t − xt||2, (6)

Lrot =

T∑
t=1

||R′t −Rt||2, (7)

Ljoints =

T∑
t=1

||P′t −Pt||2. (8)

4
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we experimentally set λ to 10 in our training process.

3.3. Trajectory Prediction

Given a motion sequence, we use the presented HM-
VAE to model the local motion, i.e., the local joint rotations.
In addition, we utilize a similar skeleton-aware architecture
without reducing temporal dimension to model the global
root joint trajectory. Specifically, given a sequence of joint
positions denoted as P ∈ RT×J×3, we apply four skeleton
convolution layers with skeleton pooling layers to obtain
motion features F ∈ RT×J′×d. We use a linear layer that
takes F as input and estimates the root velocity V ∈ RT×3.
By accumulating the root velocity in subsequent frames, we
compute the global root trajectoryG ∈ RT×3. The root tra-
jectory at any particular time t is defined as Gt =

∑t
i=0 Vi.

We train the trajectory estimation module with a loss func-
tion that consists of both velocity and trajectory terms:

Ltraj =

T∑
t=1

||V ′t − Vt||2 + ||G′t −Gt||2 (9)

4. Application

Our HM-VAE provides a generalized motion prior that
can be applicable in various tasks like 3D video pose es-
timation, motion interpolation and motion completion. In
this section, we introduce the applications we consider and
describe the effective strategy used for each application. We
provide qualitative and quantitative results in the next sec-
tion.

3D Video Pose Estimation. Our learned motion prior
provides an effective strategy to refine video based pose es-
timations. Concretely, we take potentially noisy pose es-
timates as input to the encoder, then decode refined poses
using the encoded latent vector. Our HM-VAE is designed
for a fixed window size of T frames. In order to have our
method process sequences of any length, we could sim-
ply partition the input sequence into windows of T frames.
However, with no overlap across the time windows, we ob-
serve that this may result in discontinuities. Therefore, we
propose a sliding window strategy using center frames to
process arbitrarily long sequences. Specifically, for each
time window we process, we only update the pose of the
center frame with the refined result and shift the time win-
dow one step. We take the T

2 th frame MT
2

as the refined
final result, added to our final refined sequence S. And the
window is shifted by one timestep along the input motion
sequence for processing the next window. For each window
size of pose sequences, we formally define the process as
follows, where W2 represents next window.

z = Enc(N1, ..., NT ), (10)
M1, ...,MT

2
, ...,MT = Dec(z), (11)

S = S ∪MT
2

(12)

W2 = N2, ..., NT+1 (13)

Motion Interpolation and Completion. A common
setup in motion synthesis is to generate motion sequences
given a sparse set of keyframes, which we refer to as mo-
tion interpolation. Motion completion, on the other hand,
focuses on synthesizing complete body motion from partial
observations, e.g., completing the motion of the lower body
by observing the upper body. For both motion interpola-
tion and completion tasks, we simply utilize the decoder of
HM-VAE to synthesize motion while searching for an opti-
mal latent code to match the given observations (i.e., sparse
keyframes or partial body motion). The optimization ob-
jective is to minimize the reconstruction error between the
given observations and the corresponding decoded poses.
We define the reconstruction objective as a combination
of three terms including matching the joint rotations us-
ing both 6D rotation and rotation matrix representations and
matching the joint positions after forward kinematics:

Lrec = L6d + Lrot + λ1Ljoints (14)

Concretely, we perform optimization in two phases. Start-
ing with randomly sampled latent vectors zl and zg , in the
first phase, we optimize for the latent vectors that minimize
Lrec as the only objective. The decoder parameters θ are
fixed during this phase. In the next phase, we optimize for
the decoder parameters θ [54] while keeping the latent vec-
tors fixed. In this second phase, we introduce a regulariza-
tion loss to constrain θ′ and prevent it from deviating too
much from the pre-trained parameters θ. Thus, the opti-
mization objective in the second phase becomes:

Lopt = Lrec + λ2||θ′ − θ||2 (15)

5. Experiments
In this section, we first describe the dataset we use for

training and evaluation. Then we showcase the results of
applying our HM-VAE in the applications we introduced in
the previous section. Finally, we perform an ablation study
to validate the effectiveness of our overall approach.

Dataset. We use the AMASS dataset [32] for training
HM-VAE. AMASS dataset is a large collection of 15 mo-
tion capture datasets with a unified data representation. The
dataset has more than 40 hours of motion data and serves
as a great testbed for motion modeling. We use the same
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Figure 3. Acceleration error curves for VIBE [23] results and our refined results. The right figure shows poses in consecutive
timesteps corresponding to the reference images on the left.

validation and testing split introduced in VIBE [23]. For
refining video based pose estimates, we use 3DPW [47],
a 3D motion in the wild dataset, as our test set. For the
motion interpolation task, we train our HM-VAE on the
LAFAN1 dataset [13] to provide quantitative comparisons
to the baseline methods. LAFAN1 consists of high-quality
motion capture data with specific action types. We follow
the data split proposed in [13] and use subjects 1, 2, 3 and 4
as training, and subject 5 for testing.

Implementation Details. We use a batch size of 8 for
training. The KL divergence weight β is set to 0.003. Un-
less noted otherwise, we train HM-VAE with motion se-
quences of length 64. While training our HM-VAE, to pre-
vent the learning dominated by either shallow or deep latent
vector, we use similar strategy proposed in [28]. We first
only train our model with deep latent vector, then start train-
ing both shallow and deep latent vectors after 50000 itera-
tions. For the motion interpolation experiments, we found
our method converged at around 150 iterations of optimiza-
tion, with 50 iterations for the first phase and 100 iterations
for the second phase. For the motion completion experi-
ments, we found our optimization converged at around 300
iterations with 100 iterations belonging to the first phase.

5.1. Results

3D Video Pose Estimation. In this section, we show that
our model can be used to refine the results of off-the-shelf
3D video pose estimation methods. In order to adapt HM-
VAE to different global rotations and frame rate among dif-
ferent datasets, we train our HM-VAE with data augmen-
tation. Our data augmentation consists of different frame
rates and random global rotations. Also, we use the HM-

PA-MPJPE MPJPE ACCEL ACCER

HD [21] 72.17 115.97 14.96 14.73
HD [21] w Prior 71.39 113.90 5.21 8.36
VIBE [23] 56.56 93.59 27.12 27.99
VIBE [23] w Prior 55.84 92.43 6.03 9.15

Table 1. 3D Video Human Pose Estimation Results in 3DPW
Testing Dataset.

VAE model trained with a window size 8 in this application
which we observe has a better reconstruction quality.

We show quantitative results in Table 1 where we test our
method with inputs obtained by both VIBE [23] and Hu-
manDynamics (HD) [21]. We report errors using the same
metrics as VIBE [23]. Specifically, we report the mean per
joint position error with (PA-MPJPE) and without (MPJPE)
the Procrustes-alignment, as well as the mean per joint ac-
celeration and acceleration error. In Figure 3, we show the
acceleration error curves as well as example poses obtained
for consecutive timesteps. Compared to current state-of-
the-art methods, our refined motions have smaller accelera-
tion errors. While previous approaches are prone to abrupt
changes across consecutive poses as shown in Figure 3, our
model smooths out these noisy estimates. We refer the read-
ers to the supplementary video for a detailed comparison.

Motion Interpolation. In order to demonstrate the effec-
tiveness of HM-VAE for the motion interpolation task, we
compare it to appropriate baseline methods. Specifically, in
order to interpolate local joint rotations, we use the stan-
dard spherical linear interpolation (Slerp). Since interpo-
lation quality is directly related to the number of missing
frames, we perform our evaluations in four settings where
5, 15, 30, 45 frames are missing in each setting. Following
the same setting as [13], given the starting 10 frames and
ending 1 frame as key frames, we aim to generate the frames
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Figure 4. Local trajectory comparison for motion interpolation in AMASS data. From left to right is the trajectory when key
frame interval is 30, 15, 5 respectively. The upper curves represent the left wrist, the lower curves represent the right ankle.
The star symbol represents the starting point, the arrow symbol represent the position of key frames. Our results show similar
moving patterns to ground truth, while Slerp differs a lot when key frame interval is large.

Figure 5. Global root trajectory comparison for motion interpolation in AMASS data. From left to right is the trajectory (in
xy plane) when key frame interval is 30, 15, 5 respectively. The star symbol represents the starting point, the arrow symbol
represents the position of key frames.

Figure 6. Motion interpolation results in AMASS test data.
The gray mesh shows key frame poses, the purple mesh
show the generated poses. The interval between two key
frames is 30 frames. The right figure shows the global tra-
jectory comparison for this motion sequence.
in-between. We show quantitative comparisons in terms of
local pose estimation in Table 2. In addition to the metrics
introduced before, we also report the global quaternion loss
proposed by the original benchmark [13]. We show that
our method outperforms the Slerp baseline quantitatively.
We also show that the performance achieved by our human
motion prior is competitive against the in-betweening spe-
cific method from [13] in the global quaternion loss metric.
Please note that we use the LAFAN1 dataset for this evalua-
tion to compare against the global quaternion errors directly
reported by [13] since their code is not published and the au-
thors were not able to run their model on our dataset. We

also provide additional qualitative results in the AMASS
dataset. We visualize local joint trajectories in Figure 4 for a
walking motion sequence. Our results preserve the original
motion patterns while Slerp fails to model the local motion
when the interval between two key frames becomes large.
We further demonstrate global trajectory interpolation with
our method and the alternatives. Specifically, we use our
global trajectory estimation module by providing the local
motion predicted by our method as well as Slerp. In ad-
dition, we also define a simple baseline where we linearly
interpolate the global root position of the sparse keyframes
(lerp). As shown in Figure 5, the trajectory estimated by our
method more closely resembles the ground truth. We also
show a mesh visualization result for motion interpolation in
Figure 6. For more qualitative results, we encourage readers
to check our accompanying video.

Motion Completion. Given only upper body joint rota-
tions as target, we aim to recover the complete body motion
sequences. For this experiment, we use motion sequences
from the testing and validation split of the AMASS dataset.
As shown in Figure 7, our approach is able to restore com-
plete motions since the global latent space capture the corre-
lations among different joints. Therefore, the missing lower
legs movement that matches the given upper body is re-
trieved from the learned latent space for human motion.
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Figure 7. Motion Completion Results. Given upper body joint rotation as optimization objective, the prior model can
complete whole motion sequences.

5 15 30 45

MPJPE-Slerp 16.02 57.13 96.54 118.96
MPJPE-Ours 14.08 45.09 90.41 117.93
PAMPJPE-Slerp 15.82 54.11 83.66 92.4
PAMPJPE-Ours 12.03 38.37 72.21 86.06
ACCEL-Slerp 1.75 0.78 0.35 0.23
ACCEL-Ours 4.79 4.48 4.08 3.61

ACCER-Slerp 5.98 5.97 6.05 6.06
ACCER-Ours 5.31 5.83 6.54 6.75

Global Quat-Slerp 0.22 0.62 0.98 1.25
Global Quat-[13] 0.17 0.42 0.69 0.94
Global Quat-Ours 0.24 0.54 0.94 1.25

Table 2. Quantitative Evaluation for Motion Interpolation in
LAFAN1 Dataset.

5.2. Ablation Study
In order to motivate the design choices we made, we

perform an ablation study where we compare our HM-VAE
with a non-hierarchical motion VAE (M-VAE) and a VAE
with only temporal convolution layers (TCN-VAE). The
temporal convolution layers were used in training an
autoencoder for motion processing [16, 15]. We compare
our model to the alternatives in the task of motion recon-
struction using the AMASS dataset. Specifically, for each
testing sequence, we take the local joint rotations as input
to the encoder and then decode the motion from the mean
vector. We measure the mean joint reconstruction error
as shown in Table 3. Our HM-VAE model outperforms
the M-VAE by a large margin in motion reconstruction
evaluation. And the model with skeleton-aware architecture
has superior performance than its temporal convolution
counterpart. Therefore, we show that skeleton operations

PA-MPJPE MPJPE ACCEL ACCER

TCN-VAE 87.27 103.60 1.66 6.46
M-VAE 59.71 74.34 2.36 6.15
HM-VAE 45.82 58.46 2.29 5.98

Table 3. Motion Reconstruction Results in AMASS test data.

from the skeleton-aware architecture are important for
modeling the human body structure in comparison to
using standard temporal convolution. Moreover, modeling
a global and local motion latent spaces further improve
the human motion modeling power of the skeleton-aware
architecture.
6. Conclusion

We propose a task-generic motion prior using a hierar-
chical motion VAE. We demonstrate the effectiveness of
the prior in various applications including 3D video pose
estimation, motion interpolation, and motion completion.
By learning a global and local embedding, our prior can
faithfully model human motion. While our prior enables
to refine video-based human motion estimation results by
reducing jitters, it also performs on-par with task specific
methods for motion interpolation and completion. There
are some limitations of our method we would like to address
in future work. We observe that there are accumulation of
errors when predicting the global trajectory for a long se-
quence. Exploring more constraints like foot contact during
both training and inference might be a potential approach
to address this. While we show that our prior is effective
in different applications, using few-shot learning to better
adapt to specific tasks is another interesting direction. Fi-
nally, incorporating certain physical properties and action
conditions are also promising directions.
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