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Figure 1: A rendered facial expression with (a) mesostructure only (b) static microstructure from a neutral expression (c) dynamic mi-
crostructure from convolving the neutral microstructure according to local surface strain compared to a reference photograph of the similar

expression. The insets show detail from the lower-left area.

Abstract

We present a technique for synthesizing the effects of skin mi-
crostructure deformation by anisotropically convolving a high-
resolution displacement map to match normal distribution changes
in measured skin samples. We use a 10-micron resolution scan-
ning technique to measure several in vivo skin samples as they
are stretched and compressed in different directions, quantifying
how stretching smooths the skin and compression makes it rougher.
We tabulate the resulting surface normal distributions, and show
that convolving a neutral skin microstructure displacement map
with blurring and sharpening filters can mimic normal distribu-
tion changes and microstructure deformations. We implement the
spatially-varying displacement map filtering on the GPU to inter-
actively render the effects of dynamic microgeometry on animated
faces obtained from high-resolution facial scans.
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1 Introduction

Simulating the appearance of human skin is important for rendering
realistic digital human characters for simulation, education, and en-
tertainment applications. Skin exhibits great variation in color, sur-
face roughness, and translucency over different parts of the body,
between different individuals, and when it’s transformed by artic-
ulation and deformation. But as variable as skin can be, human
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perception is remarkably attuned to the subtleties of skin appear-
ance, as attested to by the vast array of makeup products designed
to enhance and embellish it.

Advances in measuring and simulating the scattering of light be-
neath the surface of the skin [Jensen et al. 2001; Weyrich et al.
2006; d’Eon et al. 2007] have made it possible to render convinc-
ingly realistic human characters whose skin appear to be fleshy and
organic. Today’s high-resolution facial scanning techniques (e.g.
[Ma et al. 2007; Beeler et al. 2010; Ghosh et al. 2011] record fa-
cial geometry, surface coloration, and surface mesostructure details
at the level of skin pores and fine creases to a resolution of up to a
tenth of a millimeter. By recording a sequence of such scans [Beeler
et al. 2011] or performing blendshape animation using scans of dif-
ferent high-res expressions (e.g. [Alexander et al. 2010; Fyffe et al.
2014], the effects of dynamic mesostructure — pore stretching and
skin furrowing — can be recorded and reproduced on a digital char-
acter.

Recently, [Graham et al. 2013] recorded skin microstructure at
a level of detail below a tenth of a millimeter for sets of skin
patches on a face, and showed that texture synthesis could be used
to increase the resolution of a mesostructure-resolution facial scan
to one with microstructure everywhere. They demonstrated that
skin microstructure makes a significant difference in the appear-
ance of skin, as it gives rise to a face’s characteristic pattern of
spatially-varying surface roughness. However, they recorded skin
microstructure only for static patches from neutral facial expres-
sions, and did not record the dynamics of skin microstructure as
skin stretches and compresses.

Skin microstructure, however, is remarkably dynamic as a face
makes different expressions. Fig. 2 shows a person’s forehead as
they make surprised, neutral, and angry expressions. In the neu-
tral expression (center), the rough surface microstructure is rela-
tively isotropic. When the brow is raised (left), there are not only
mesostructure furrows but the microstructure also develops a pat-
tern of horizontal ridges less than 0.1 mm across. In the perplexed
expression (right), the knitted brow forms vertical anisotropic struc-
tures in its microstructure. Seen face to face or filmed in closeup,
such dynamic microstructure is a noticeable aspect of human ex-
pression, and the anisotropic changes in surface roughness affect
the appearance of specular highlights even from a distance.

Dynamic skin microstructure results from the epidermal skin lay-
ers being stretched and compressed by motion of the tissues under-



Figure 2: Three real forehead expressions (surprised, neutral, and
perplexed) made by the same subject showing anisotropic deforma-
tions in microstructure.

neath. Since the skin surface is relatively stiff, it develops a rough
microstructure to effectively store a reserve of surface area to pre-
vent rupturing when extended. Thus, parts of the skin which stretch
and compress significantly (such as the forehead and around the
eyes) are typically rougher than parts which are mostly static, such
as the tip of the nose or the top of the head. When skin stretches,
the microstructure flattens out and the surface appears less rough
as the reserves of tissue are called into action. Under compres-
sion, the microstructure bunches up, creating micro-furrows which
exhibit anisotropic roughness. Often, stretching in one dimension
is accompanied by compression in the perpendicular direction to
maintain the area of the surface or the volume of tissues below. A
balloon provides a clear example of roughness changes under de-
formation: the surface is diffuse at first, and becomes shiny when
inflated.

While it would be desirable to simulate these changes in appear-
ance during facial animation, current techniques do not record or
simulate dynamic surface microstructure for facial animation. One
reason scale: taking the facial surface to be 25cm X 25cm, record-
ing facial shape at 10 micron resolution would require real-time Gi-
gapixel imaging beyond the capabilities of today’s camera arrays.
And simulating a billion triangles of skin surface, let alone several
billion tetrahedra of volume underneath, would be computationally
very expensive using finite element techniques.

In this work, we approximate the first-order effects of dynamic
skin microstructure by performing fast image processing on a high-
resolution skin microstructure displacement map obtained as in
[Graham et al. 2013]. Then, as the skin surface deforms, we blur
the displacement map along the direction of stretching, and sharpen
it along the direction of compression. On a modern GPU, this can
be performed at interactive rates, even for facial skin microstruc-
ture at ten micron resolution. We determine the degree of blur-
ring and sharpening by measuring in vivo surface microstructure
of several skin patches under a range of stretching and compres-
sion, tabulating the changes in their surface normal distributions.
We then choose the amount of blurring or sharpening to affect a
similar change in surface normal distribution on the microstructure
displacement map. While our technique falls short of simulating
all the observable effects of dynamic microstructure, it produces
measurement-based changes in surface roughness and anisotropic
changes in surface microstructure orientation consistent with real
skin deformation. For validation, we compare renderings using our
technique to real photographs of faces making similar expressions.

2 Background and Related Work

Our skin is a complex multilayered organ that plays numerous roles
in protection, heat regulation, sensing, and hydration. As the prin-
cipal surface we see when we look at each other, it is also key in
human communication, telling others about our health, our age, our
physical state, and our emotions.

Skin is elastic, with an ability to safely stretch an average of 60
to 75 percent [Edwards and Marks 1995]. The top layers of the
skin, the epidermis, are relatively stiff and achieve much of their
elasticity through a network of fine-scale ridges and grooves which
provide areserve of tissue which can flatten when pulled [Montagna
and Parakkal 1974]. This microstructure varies in scale and texture
throughout the body and is responsible for the specular BRDF of the
skin. As seen in Fig. 2, skin’s texture orientation and BRDF change
dramatically as the skin is subjected to stretching and compression.

The physical and mechanical properties of skin have been studied
significantly, including the relationship between deformation and
changes in specular reflectance. [Ferguson and Barbenel 1981]
measured skin roughness under varying strain and quantified how
stretching reduces the surface roughness along that direction (Fig.
3). They also showed a relationship between the surface profile
length and the distribution of surface orientations. [Federici et al.
1999], [Guzelsu et al. 2003], and [Schulkin et al. 2003] use surface
roughness of soft tissue materials as an indicator of mechanical ef-
fects including applied stresses and strain. [Federici et al. 1999]
and [Guzelsu et al. 2003] proposed a noninvasive method to mea-
sure the stretch of soft tissues including skin based on specular re-
flectivity. They used polarized light to measure specular reflectance
and observed that the reflected light increases with stretching as
the surface becomes smoother. [Schulkin et al. 2003] extended the
measurement to characterize how subsurface reflectance changes in
response to mechanical effects.
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Figure 3: A normal distribution changing under deformation

In computer graphics, light reflection from rough surfaces is often
modeled by physically-based microfacet distribution models such
as [Torrance and Sparrow 1967] and [Cook and Torrance 1982].
A microfacet distribution model simulates roughness by symmet-
ric V-grooves at the microscopic level, called microfacets, which
are assumed to behave like a perfect mirror. More recently, Gaus-
sian random microfacet models are favored over V-groove mod-
els [Heitz 2014]. The change of microfacet orientations at a micro
level changes the resulting surface BRDF and alters the appearance
of the surface. Therefore, it is important to take into account such
dynamic distributions in simulating a surface BRDF.

Physically-based simulation techniques have been applied to fa-
cial animation at a range of scales from overall facial shape (e.g.
[Platt and Badler 1981; Terzopoulos and Waters 1993; Sifakis et al.
2005; Bickel et al. 2009]) to surface mesostructure on the order of
forehead furrowing and crow’s feet around the eyes (e.g. [Bickel



et al. 2012; Rémillard and Kry 2013; Li and Kry 2014]). How-
ever, due to computational complexity such techniques have not yet
been applied to skin microstructure in the 10 micron scale over an
entire face. Data driven techniques have been employed to syn-
thesize facial details onto novel face poses using e.g. polynomial
functions [Ma et al. 2008] or statistical models [Golovinskiy et al.
2006], but only at the scale of mesostructure. Recent work in ma-
terial acquisition has noted the importance of capturing surface mi-
crostructure using techniques such as computational tomography
[Zhao et al. 2011] and an elastomeric sensor [Johnson et al. 2011].
In our work, we wish to capture in vivo skin microstructure with-
out contacting the surface and adapt the microstructure acquisition
process of [Graham et al. 2013], which showed that constrained
texture synthesis could be used to create microstructure for an en-
tire facial model based on a set of discrete microstructure patches.
[von der Pahlen et al. 2014] showed a real-time implementation
of skin microstructure using procedural noise functions tailored to
match measured skin samples.

Accurately modeling and efficiently rendering the subtle reflection
effects of surface microstructure has been an area of significant re-
cent interest [Dupuy et al. 2013; Jakob et al. 2014; Yan et al. 2014]
for man-made materials. The technique proposed by [Dupuy et al.
2013] admits a microstructure scaling factor which can uniformly
reduce or increase the amplitude of surface microstructure as a ma-
terial deforms. Our work models a richer set of deformation-based
reflectance effects by directionally blurring and sharpening the sur-
face microstructure based on local surface strain, and we tune this
filtering to match measurements of real skin patches. However, we
do not address efficient anti-aliased rendering techniques.

3 Basic Approach

Our approach to synthesizing skin microstructure deformation is to
directionally blur and sharpen a high-resolution surface displace-
ment map according to the amount of stretching or compression.
We can visualize this along a one-dimensional cross-section as in
Fig. 4. In the center is a 3mm wide cross-section of ventral forearm
skin measured in [Liew et al. 2011] with optical coherence tomog-
raphy (OCT). To its left and right are compressed and stretched
versions with no modification to surface height, decreasing the sur-
face length by 20% and increasing it by 35%, respectively. More
realistically, the surface would deform to minimize strain. We can
approximate this effect by smoothing the height map of the surface
under stretching as seen at the right, and sharpening the height map
under compression as seen at the left. In both cases, the surface
length of the neutral profile is now maintained, causing a greater
effect on the distribution of surface normals.

Fig. 5 shows this microstructure convolution technique applied to
the surface of a deforming sphere. In the top row, the sphere is
rendered with a microstructure displacement map generated with a
volume noise function. When shrunk, an isotropic sharpening filter
is applied to the displacement map, making it bumpier and giv-
ing the sphere a rougher surface reflectance. When expanded, the
sphere’s displacement map is blurred, giving it a smoother, shinier
appearance, as when inflating a balloon. The effects are better seen
in the expanded insets of areas near the specular reflections. In the
bottom row, the sphere is textured with a displacement map from
a real skin microgeometry sample, expanded to the sphere using
texture synthesis. The sphere is squashed and stretched to produce
anisotropic surface strain, which causes anisotropic filtering of the
displacement map: blurring in one dimension and sharpening in the
other. This results in anisotropic micro-ridges, similar to those seen
in real human skin in Fig. 2 during facial expression.

For the sphere example, the amount of stretching or blurring pro-

Figure 5: Deforming sphere with dynamic microgeometry. (Top)
The microstructure becomes rougher through displacement map
sharpening when shrunk, and smoother through blurring when
expanded. The insets show details of the specular highlights.
(b) Anisotropic compression and stretching yields anisotropic mi-
crostructure.

portional to the surface strain was chosen by the user to create an
appealing dynamic appearance. For rendering a realistic human
face, it would be desirable for the filter kernel to be driven accord-
ing to the behavior of real skin. To this end, we use a measure-
ment apparatus to record the behavior of skin microstructure under
stretching and compression as described in the next section.

4 Measurement

We record the surface microstructure of various skin patches at
10 micron resolution with a setup similar to [Graham et al. 2013]
which uses a set of differently lit photos taken with polarized gradi-
ent illumination [Ma et al. 2007]. The sample patches are scanned
in different deformed states using the lighting apparatus with a cus-
tom stretching measuring device consisting of a caliper and a 3D
printed stretching aperture. The aperture of the patch holder is set
8 mm for the neutral deformation state and is set 30 cm away from
a Ximea machine vision camera which records monochrome 2048
by 2048 pixel resolution images with Nikon 105 mm macro lens
at /16, so that each pixel covers a 6 micron square of skin. The
16 polarized spherical lighting conditions allow the isolation and
measurement of specular surface normals, resulting in a per-pixel
surface normal map. We integrate the surface normal map to com-
pute a displacement map and use a high pass filter to remove sur-
face detail greater than the scale of a millimeter to remove surface
bulging.

Each skin patch, such as part of the forehead, cheek, or chin, is cou-
pled to the caliper aperture using 3M double-sided adhesive tape,
and each scan lasts about half a second. After performing the neu-
tral scan, the calipers are narrowed by 0.8mm and the first com-
pressed scan is taken; this continues until the skin inside the aper-
ture buckles significantly. Then, the calipers are returned to neutral,
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Figure 4: Stretching and compressing a measured OCT skin profile, with and without convolution filters to maintain surface length.

Figure 6: Microstructure acquistion in a polarized LED sphere
with macro camera and articulated skin deformer.

and scans are taken with progressively increased stretching until the
skin detaches from the double-stick tape. Fig. 7 shows a skin sam-
ple in five different states of strain. The calipers can be rotated to
different angles, allowing the same patch of skin to be recorded in
up to four different orientations, such as the forehead sample seen
in Fig. 8.
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Figure 7: Texture-aligned surface normal (top) and displacement
(bottom) maps of a skin patch under vertical compression and
stretching. (a) full compression, (b) medium compression, (c) neu-
tral, (d) medium stretching, and (e) full stretching.

With skin patch data acquired, we now wish to characterize how
surface microfacet distributions change under compression and
stretching. After applying a denoising filter to the displacement
maps to reduce camera noise, we create a histogram of the surface
orientations observed across the skin patch under its range of strain.
Several such histograms are visualized in Fig. 8 next to their cor-
responding skin samples, and can also be thought of the specular
lobe which would reflect off the patch. As can be seen, stretched
skin becomes anisotropically shinier in the direction of the stretch,
and anisotropically rougher in the direction of compression. For
some samples, such as the chin in Fig. 8(g,h), we observed some
dependence on the stretching direction to the amount of change in
normal distributions. However, we do not yet account for the effect
of the stretching direction in our model.

The variance in z and y of the surface normal distribution quan-

tify the degree of surface smoothing or roughening according to
the amount of strain put on the sample. Fig. 9 plots the changes
in surface normal distribution in the direction of the strain for sev-
eral facial skin patches. Again, stretched skin becomes shinier, and
compressed skin becomes rougher.
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Figure 9: Surface normal distributions plotted against the amount
of strain for several skin patches.

5 Microstructure Analysis and Synthesis

Based on the skin patch data obtained as in Section 4, we model
the relationship between the measured surface normal distribution
and surface stretching or compression (collectively deformation).
We observe that the change in surface detail in Fig. 7 from neutral
(c) to stretched (e) qualitatively resembles a blurring filter in the
direction of stretch, and from neutral (c) to compressed (a) qualita-
tively resembles a sharpening filter in the direction of compression,
perhaps with some blurring in the perpendicular direction. These
qualitative observations are consistent with the surface normal dis-
tribution plots in Fig. 8. Such filters are also inexpensive to com-
pute on GPU hardware. Hence, we design a method to synthesize
the microgeometry of skin under deformation using a microgeome-
try displacement map of the skin in a neutral state and a parametric
family of convolution filters ranging continuously from sharpening
to blurring. We then synthesize spatially and temporally varying
microstructure for faces undergoing dynamic deformation at inter-
active rates by driving the filter parameters by local deformation
fields. Our framework is generic in the sense that the neutral mi-
crogeometry displacment map can come from any source, such as
noise functions [von der Pahlen et al. 2014] or data-diven image
analogy techniques [Graham et al. 2013].

Deformation Model We formulate our model as a convolution
in the 2D texture coordinate space associated with the surface ge-
ometry. Given a high-resolution microstructure displacement map
D for the neutral pose, we synthesize the deformed microdisplace-
ment map D’ as:

D' (u,v) = (D * Ku,)(u,v), (1
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Figure 8: Each column shows measured 8mm wide facial skin patches under different amounts of stretching and compression, with a
histogram of the corresponding surface normal distributions shown to the right if each sample.

where (u, v) are texture space coordinates, K, ,, is the convolution
kernel for coorinate u, v, and * represents discrete convolution:

(D * K)(u,v) = Z Z D(u—i,v—j)K(,5). ()

Supposing K were constant over the entire surface, and linearly
seperable over some perpendicular axes s and t, we could write
D' = DxK = (D *[s] k) #[t] k', where k® and k" are 1D kernels
and *[a] represents convolution along some axis a = (ay, av):

(D *[a] k) (u,v) = Z D(u —iay,v —ia,)k(i).  (3)

This allows efficient computation as a sequence of two 1D convolu-
tions, reducing the computational cost from O(N?) to O(2N) for
an N x N kernel. Unfortunately, in general, the kernel is spatially
varying. Nonetheless, if the kernel varies gradually, we may still
approximate the spatially varying 2D convolution as a sequence of
two spatially varying 1D convolutions, as illustrated in Fig. 10:

D' (u,v) = (D° *[ty,.] kfuj)(u7 v), “)
where D* (u, v) = (D #[su,v] ki) (0, v). )

In practice we align the axis s to the direction of stretch (if any)
and t to the direction of compression (if any), where s and t are
always mutually perpendicular. We employ a 2-parameter family
of 1D convolution kernels encompassing sharpening and blurring:

k=(1-a)d+ag(,0), (6)

where § is the discrete delta function, —2 < « < 1 is the filter
strength, and o is the standard deviation of the normalized discrete
Gaussian kernel G. With o > 0 the filter blurs the signal; with

a < 0 it sharpens; and with o = 0 it preserves the signal.

V, D(u+iS,, v+is,) V, D (u+jt,, viit,)

Figure 10: Displacement map pixels are sampled along the princi-
pal directions of strain with a separable filter for convolution. D*®
is computed from D, then D' is computed from D*®.

Parameter Fitting We estimate the parameters (a®, o®) defining
k® and (o', o) defining k' for each measured skin patch using
a brute-force approach, where the principle directions s and t are
known for each patch. We assume these parameters to be constant
over the extent of each patch. We search for & € (—2...1) with
a granularity of 0.01 and 0 € (1um...100xm) with a granularity
of 0.5um. We find the parameters that minimize the total variation
between surface normal histograms of the ground truth displace-
ment map and the convolved neutral displacement map. The sur-
face normals are computed in the target deformation coordinates,
meaning the neutral displacement map is stretched or compressed
after convolution to match the deformed shape. We compute the
surface normal histograms on the GPU by splatting the surface nor-
mal computed at each pixel in the displacement map into a grid of
buckets, based on the v and v components of the normal in tan-
gent space. Care must be taken that enough samples are available
for the number of buckets used, in order to avoid bucket aliasing
which may misguide the optimization. We used patches with up to
2000 x 2000 pixels and 64 x 64 buckets. For efficiency, we optimize
only (o, %) or (a, ") for the kernel in the direction of caliper
movement, omitting the kernel in the the other direction. The to-
tal variation metric is simply the absolute difference between the



ground truth histogram and the histogram of the convolved neutral
patch, summed over the buckets:

a,a:argminz ‘Hb—l-ih, s (@)

&,6 beB

where B is the set of histogram buckets, H is the ground truth his-
togram, and H is the histogram obtained by 1D convolution of the
neutral skin patch using parameters &, ¢ in the direction of move-
ment. Fig. 11 tabulates the fitted parameters for a patch of forehead
skin undergoing a range of stretching and compression.

r | 073 079 088 094 1.08 1.15 122 1.28

a | -2 -1.76  -02  -0.02 054 027 1 1

o | 65 6.5 13 22 145 19 17 24

Figure 11: Fitted kernel parameters o and o (um) for a patch of
forehead skin undergoing a range of stretching and compression. r
is the stretch ratio, with v > 1 stretching and r < 1 compressing.

Kernel Table Construction In order to apply our model to skin
undergoing a novel deformation, we must first establish a relation-
ship between the deformation and the kernel parameters, using the
table of parameters fitted to sample patches. For each measured
skin patch, the principal axes are known and also the stretch ratio
r is known, defining the deformation. When r > 1, the patch is
undergoing stretching, and when r < 1, the patch is undergoing
compression. Fig. 12 plots the fitted kernel parameters o and o
against the stretch ratio r along the primary axis of stretch or com-
pression. Based on these data points, we fit piecewise linear models
relating « and o to r. We partition the domain of 7 into line seg-
ments by manually inspecting the data. For a, we use connected
line segments to enforce smooth transitions between compression
and stretching, and we constrain one segment to pass through neu-
tral case (r = 1, = 0) exactly. For o, we fit one line segment
to the compression samples and another line segment to the stretch
samples, with a discontinuity at » = 1. For example, the forehead
patch yields the following model:

a = min(1,15.4r — 13.8,3.09(r — 1)); 8)
(38.2r —26.5)um ifr >1

o= . )
(70.5r — 46.9)um  otherwise.

As we are not assigning any physically meaningful interpretation
to « and o, the fitted functions serve merely as a rapid lookup to
compute parameters from stretch ratios. Other functions could be
employed if desired, but it is important that & = 0 in the neutral
case, and hence a single line fit to o would not fit both the stretching
behavior and compression behavior well.
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Figure 12: Fitted kernel parameters o and o plotted against the
stretch ratio r. Dots represent parameters fitted to sample patches,
and lines represent the piecewise linear fits in (8), (9).

Applying to a Novel Surface Animation Given a triangular
mesh undergoing novel deformation, we may estimate the principal
directions and stretch ratios of the local deformation at every vertex
on the mesh, and in turn compute the associated kernel parameters,
allowing the deformed displacement map to be synthesized using
the two-pass separable convolution technique in a GPU fragment
shader. Our generic framework allows deformation from physi-
cal simulation, keyframe animation, or facial performance capture.
Consider a triangle P with v, v1, and v being vertices on the neu-
tral face, and the deformed counterpart P’ likewise with v, v}, and
v being the vertices. We compute the rotation R that maps the tri-
angle P in 3D space to the so-called tangent space. Tangent space
may be determined by first computing the affine 2 X 3 transform
@ that maps world coordinates to UV texture coordinates, and then
computing R as the closest rotation matrix to ) (using e.g. SVD or
QR decomposition), first concatenating to it a third row that is the
cross product of the first two rows. As the last component in tan-
gent space is irrelevant, we truncate the last row of R again leaving
a 2 x 3 matrix. We likewise compute R’ to map P’ into 2D tangent
space. Then we compute a linear transformation 7" that maps the
2D neutral triangle RP onto the deformed triangle R’ P’:

[el e |=T[]e e ], (10)

where e; is an edge from Rvg to Rv;, and the rest is analogous, and
the 2 by 2 linear transformation matrix 7" can be trivially computed.
Such T can be found per deformed triangle. In practice, we want
as smooth a 2D deformation field as possible in order to drive the
per-pixel displacement map without visible seams. To that end,
we average the linear transformation 7" of each face attached to a
vertex, and then interpolate the per-vertex 7" within a GPU fragment
shader, and perform Singular Value Decomposition of the form:

T=UZV", 1)
per-fragment with
s 0
s= { o ] : (12)

where 7, and r; are the stretch ratios (rs > 7¢). With a 2 by 2
matrix, such a SVD can be trivially computed in closed form in a
GPU fragment shader, providing smooth spatially varying 2D de-
formation fields as illustrated in Fig.13. (Alternatively, if the mesh
animation is produced using a physics simulation such as a finite
element model, the stretch and strain could be obtained more di-
rectly from the simulation [Irving et al. 2004].) The transform from
principle deformation axes to UV coordinates is then:

S=QR'V, (13)

and hence the principle axes s and t in UV coordinates are the first
and second columns of S, normalized, and the magnitudes of the
columns serve as the conversion factor required for converting o
from world distance to UV distance for convolution. Indeed, the
convolution may be performed without conversion if s and t are
taken as the un-normalized columns of S. Substituting the values
rs and 7¢ into the parametric kernel model (8), (9) produces the ker-
nels k® and k' at every point on a deforming surface, allowing the
deformed displacement map to be synthesized for the entire face.

6 Results

Fig. 5 shows two deforming spheres with microstructure convolved
according to local surface deformation, as described in Sec. 3.

Fig. 14 shows frames from a sequence of a 1cm wide digitized skin
patch being deformed by an invisible probe. It uses a relatively



Figure 13: Strain field visualization for a smile expression (top
row) and a sad expression (bottom row) with the first stress eigen-
value (a), (e), and the second eigen value (b), (f), and strain direc-
tion visualization (c), (d), (g), and (h).

low-resolution finite element volumetric mesh with 25,000 tetrahe-
dra to simulate the mesostructure which in turns drives dynamic mi-
crostructure convolution. The neutral microstructure was recorded
using the system in Fig. 6 at 10 micron resolution from the forehead
of a young adult male, and its microstructure is convolved with pa-
rameters fit to match its own surface normal distribution changes
under deformation as described in Sec. 5. The rendering was made
using the V-Ray package to simualte subsurface scattering. As seen
in the accompanying video, the skin microstructure bunches up and
flattens out as the surface deforms at a resolution much greater than
the FEM simulation.

Fig. 1 highlights the effect of using no microgeometry, static micro-
geometry, and dynamic microgeometry simulated using displace-
ment map convolution with a real-time rendering. Rendering only
with 4K resolution mesostructure from a standard facial scan pro-
duces too polished an appearance at this scale. Adding static mi-
crostructure computed at 16K resolution using a texture synthesis
technique [Graham et al. 2013] increases visual detail but produces
conflicting surface strain cues in the compressed and stretched ar-
eas. Convolving the static microstructure according to the surface
strain using normal distribution curves from a related skin patch as
in Sec. 5 produces anisotropic skin microstructure consistent with
the expression deformation and a more convincing sense of skin
under tension as can be observed in the reference photograph of a
similar expression on the right. Renderings are made with a real-
time hybrid normal shading technique [Ma et al. 2007].

Fig. 15 compares the real-time renderings with static (left) and dy-
namic microstructure (right) from a facial performance sequence
of a female subject. Again, the dynamic microstructure render-
ing creates anisotropic dynamic microstructure, providing a vis-
ceral sense of surface tension around the cheek region undergoing
a smile expression. The details can be seen in motion (and, ideally,
full-screen) in the accompanying video.

Fig. 16 (a) through (c) show qualitative validation of our technique
(b) compared with a reference photograph of a similar facial region
and expression. Facial details with the specular channel on its own
(a) highlight the dynamic microstructure which introduces qualita-
tively similar varying angles of anisotropic surface texture in the

Figure 14: A sampled skin patch is deformed with FEM which
drives microstructure convolution, rendered with path tracing.

areas undergoing stretching and compression. Fig. 16 (d) through
(f) show additional renderings of an older subject, exhibiting plau-
sible dynamic surface details under natural facial expressions.

7 Discussion

While in several ways our skin microstructure deformation tech-
nique produces plausible results, it is important to note that it is at
best an approximation to the complex tissue dynamics which occur
at the microscale. It does, however, get two perceptually impor-
tant aspects correct, which is the local orientation of the anisotropic
microstructure, and, by construction, the anisotropic surface nor-
mal distributions. As a result, given the relative efficiency of image
convolution, this technique may prove useful for increasing the re-
alism and skin-like quality of virtual characters for both interactive
and offline rendering.

8 Future Work

Our technique of simulating dynamic skin microstructure leaves
open several areas for future work. First, we currently employ sim-
ple linear kernels to filter the displacement map to approximate the
effects of stretching and compression. A limitation of linear filters
is that they apply the same amount of smoothing or sharpening to
both ridges and grooves, whereas a ridge, filled with tissue, is likely
to deform less than a groove, filled with air. One can imagine devel-
oping nonlinear filters for microstructure deformation which might
better simulate the local shape of the deformed skin surface.

Second, while the results in this paper were made using supersam-
pling for antialiasing, efficient rendering of dynamic microstruc-
ture should leverage multiresolution surface detail rendering tech-
niques such as LEAN [Olano and Baker 2010] or LEADR [Dupuy
et al. 2013] mapping. LEADR mapping may be especially rele-



Figure 15: Real-time rendering of the cheek region from a facial performance animation with enhanced dynamic surface details (right)
compared to the static microstructure rendering (left). The dynamic microstructure provides an additional indication of the deformation on

the cheek when the subject makes a smile expression.

vant since it is designed to work with deformable animated surfaces
and includes a microfacet BRDF model with masking and shadow-
ing. Ideally, the efficient resampling schemes of LEADR mapping
could be augmented to accomodate the spatially-varying convolu-
tions performed in our microstructure deformation process.

9 Conclusion

We have presented a fast approximate approach to simulating the
effects of deforming surface microstructure under compression and
stretching where a high-resolution displacement map is blurred and
sharpened according to local surface strain. We measured normal
distributions of real skin samples under stretching and compres-
sion to drive the amount of blurring and compression for animating
faces. The results show a greater visual indication of surface ten-
sion seen in the surface reflections than using a static microstruc-
ture displacement map, and more skin-like behavior for deforming
surfaces. Since the technique can be implemented on the GPU at in-
teractive rates, it may be useful for rendering high-quality animated
characters both for pre-rendered and interactive applications.
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(d)
Figure 16: Real-time comparison renderings from a blendshape animation (middle) compared to the reference photographs of a similar
expression (right). Specular-only real-time renderings show anisotropic dynamic microstructure at different orientations in the expressions
(left). Top two rows: young male subject’s crow’s feet region with the eyes shut tightly, and the stretched cheek region when the mouth is
pulled left. Middle two rows: young female subject crow’s feet region, and the nose under the squint expression. Bottom row: older subject’s
mouth with a smile expression (d), raised down forehead (e), and the stretched cheek and mouth regions (f).




