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Abstract

We propose a novel method for single-shot photometric
stereo by spectral multiplexing. The output of our method is
a simultaneous per-pixel estimate of the surface normal and
full-color reflectance. Our method is well suited to materi-
als with varying color and texture, requires no time-varying
illumination, and no high-speed cameras. Being a single-
shot method, it may be applied to dynamic scenes with-
out any need for optical flow. Our key contributions are
a generalization of three-color photometric stereo to more
than three color channels, and the design of a practical six-
color-channel system using off-the-shelf parts.

1. Introduction and Related Work
Photometric stereo is a powerful tool in the arsenal of

3D object acquisition techniques. Introduced by Woodham
[11], photometric stereo methods estimate surface orienta-
tion (normals) by analyzing how a surface reflects light in-
cident from multiple directions. Though it is not suitable
for scenes with heavy occlusion or shadowing, photomet-
ric stereo has enjoyed widespread use and remains an ac-
tive research topic. Nehab et al. [9] show that dense sur-
face normal information may be used to improve the pre-
cision of scanned geometry. Ma et al. [8] show that pho-
tometric stereo captures fine-scale facial details missed by
more direct geometric measurement techniques. Photomet-
ric stereo was originally applied to static scenes, but recent
methods broaden its applicability to scenes with spatially
varying color and dynamic motion. De Decker et al. [3]
use multiple photographs together with spectral multiplex-
ing to capture multiple illumination conditions with fewer
photographs, for various applications including photomet-
ric stereo for scenes with motion and color variation. Kim
et al. [5] improve on these results by explicitly modeling
the effects of sensor crosstalk and changes in surface orien-
tation due to subject motion. Still, all prior works that cap-
ture both color and normal rely on optical flow, and will fail
if the scene contains enough motion or temporal inconsis-

tency. Our key motivation is to advance the state of the art in
single-shot capture, because it has a fundamental advantage
over multi-shot capture: it is trivially robust to any degree
of motion or temporal inconsistency in the scene. Several
prior works have achieved single-shot photometric stereo,
by employing spectral multiplexing, but are all subject to
certain limitations on the surface coloration. Woodham [11]
proposed spectral multiplexing for three-source photomet-
ric stereo: using an off-the-shelf color camera, it is possible
to image a scene as illuminated by three spectrally distinct
light sources in a single photograph, and then use standard
three-source photometric stereo methods to compute sur-
face normals, provided the subject has uniform coloration.
Klaudiny et al. [6] capture photometric surface normals for
dynamic facial performances using spectrally multiplexed
three-source illumination, but apply white makeup to the
subject. Hernandez et al. [4] provide a detailed character-
ization of pixel intensities resulting from spectrally multi-
plexed illumination and describe a method for automatic
calibration of the intrinsics of the apparatus. All of these
previous works for single-shot photometric stereo assume
that the materials in the scene have constant chromatic-
ity, meaning that the spectral distribution of the surface re-
flectance varies only by a uniform scale factor. In this pa-
per, we relax the constant chromaticity restriction, enabled
by capturing images with a greater number of spectrally
distinct color channels. We show that just a single multi-
spectral photograph of a subject provides enough informa-
tion to recover both the full-color reflectance and the surface
normals on a per-pixel basis.

Other works have explored related aspects of multi-
spectral capture. Wenger et al. [10] built a nine-channel
light source made from different LEDs and filters for im-
proved lighting reproduction on faces. Christensen et al.
[2] show that multiple color channels provide useful in-
formation to photometric stereo, and note that more than
three color channels may provide even further information.
However, their work is in the context of using multiple pho-
tographs under differing illumination, and so it is not spec-
trally multiplexed in the sense that we are discussing here.
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2. Spectrally Multiplexed Photometric Stereo
In spectrally multiplexed photometric stereo, a scene is

illuminated by multiple spectrally distinct light sources, and
photographed by a camera system configured to capture
multiple spectrally distinct color channels. Following the
notation of [4], the pixel intensity ck(x, y) for color chan-
nel k at pixel (x, y) is given by:

ck(x, y) =
∑
j

lTj n(x, y)

∫
Ej(λ)R(x, y, λ)Sk(λ) dλ,

(1)
where lj is the direction toward the jth light, λ represents
wavelength, Ej(λ) is the spectral distribution of the jth
light (presumed distant), n(x, y) and R(x, y, λ) are the sur-
face normal and spectral distribution of the reflectance at
pixel (x, y) (presumed Lambertian), and Sk(λ) is the spec-
tral response of the camera sensor for the kth color channel.
Dropping the (x, y) indeces, and considering discrete wave-
lengths instead of a continuous wavelength domain, we may
write (1) in matrix form (with J lights, N discrete wave-
lengths, and K color channels) as:

c = Sdiag(r)ELn, (2)

where c = [c1, c2, . . . , cK ]T, S(k, i) = Sk(λi),
r = [R(x, y, λ1), R(x, y, λ2), . . . R(x, y, λN )]T, E(i, j) =
Ej(λi), and L = [l1, l2, . . . lJ ]

T. This is equivalent to the
following system of bilinear equations in r and n:

ck = rTdiag(sk)ELn , k = 1 . . .K, (3)

where sk = [S(k, 1),S(k, 2), . . .S(k,N)]T. The system
(3) is underdetermined, having N + 3 degrees of freedom
but only K equations, and therefore requires N + 3 − K
additional constraints to regularize the system. In previous
work with three color channels (K = 3), the required N
constraints are given implicitly by restricting the reflectance
to have constant chromaticity [11, 4]. Thus r is presumed
constant (with a scalar albedo factor absorbed into n), re-
ducing (3) to a system of linear equations. Our key contri-
bution is to remove the requirement that r be restricted to
constant chromaticity. We relax this restriction, allowing r
to vary in some D-dimensional linear basis B, yielding:

ck = r̂TBTdiag(sk)ELn , k = 1 . . .K, (4)

where r̂ is a D dimensional vector representing reflectance
in the reduced basis. We may lump the reflectance basis, the
sensor responses, and the illumination into a single matrix
per color channel Mk = BTdiag(sk)EL, yielding:

ck = r̂TMkn , k = 1 . . .K. (5)

We may then choose D = K − 2, so that the system (5)
has K + 1 degrees of freedom and K equations, and we re-
move the final degree of freedom with ‖n‖ = 1. We may

also increase robustness by lowering the dimensionality of
the basis further (D < K − 2), causing (5) to be overdeter-
mined. Least squares solutions to overdetermined systems
of bilinear equations can be obtained using a normalized it-
erative algorithm [1], which naturally makes use of the nor-
malization ‖n‖ = 1. We make the modification that instead
of requiring the first non-zero component of the normalized
unknown to be positive, we require the z component of the
surface normal (nz) to be positive, where z is defined to
face toward the camera. The normalized iterative algorithm
operates as follows:

n← [0, 0, 1]T

for several iterations do
r̂← [M1n,M2n, . . .MKn]T \ [c1, c2, . . . cK ]T

n← [MT
1 r̂,M

T
2 r̂, . . .M

T
K r̂]T \ [c1, c2, . . . cK ]T

n← sign(nz)n/‖n‖
end for

where A \ b = argminx‖Ax − b‖2. One practical im-
plication of our method is that capturing full-color RGB re-
flectance along with surface normals requires multi-spectral
photography with at least five color channels. Intuitively
this makes sense, as RGB reflectance has three degrees of
freedom, and surface normals have two.

3. Apparatus
We realize our method with a six-color-channel imple-

mentation that enables simultaneous capture of surface nor-
mals and three-color-channel reflectance, overdetermined
by one degree of freedom for robustness, though other con-
figurations are possible. We illuminate a scene with three
light sources, each a cluster of differently colored LED
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Figure 1. Schematic view of the apparatus. Three spectrally
distinct light sources (A, B, C) illuminate a subject (D), who
is recorded by a multi-spectral camera system (E), consisting of
two ordinary cameras filtered by Dolby “left eye” and “right eye”
dichroic filters, and aligned using a beam splitter.



lights with filters. We photograph the scene with a cam-
era system configured to measure six different channels of
the visible light spectrum. Figure 1 offers a schematic view
of the apparatus.

To obtain six-channel photographs, we use a beam split-
ter to align two ordinary color cameras, and place a Dolby
“left eye” dichroic filter over one camera lens, and a Dolby
“right eye” dichroic filter over the other camera lens (as de-
picted in figure 1). Together, the two Dolby filters separate
the visible spectrum into six non-overlapping bands, plot-
ted in figure 2. We use Grasshopper cameras from Point
Grey Research, which are easily synchronized to capture si-
multaneous photographs, and have a nearly linear intensity
response curve. The cameras themselves are not modified,
and standard color demosaicing algorithms may be used,
since the data is captured as two separate three-channel pho-
tographs. A drawback of placing Dolby filters in front of the
lenses is that more than half of the light reaching the sensors
is lost. Nevertheless, we obtained well-exposed, low-noise
images with the Grasshopper cameras in a real-time capture
context. In applications requiring higher signal to noise ra-
tios, three-chip color cameras could be employed, which
have less inherent light loss than cameras based on Bayer
color filter arrays.

Figure 2. Spectral distribution plots of the Dolby “right eye” filter
(A) and Dolby “left eye” filter (B).

The light sources are clusters of different combinations
of violet, blue, cyan, green, orange and red LEDs. The spec-
tral distributions of the violet, cyan and orange LEDs ap-
proximately coincide with the Dolby “right eye” filter, and
the blue, green and red LEDs approximately coincide with
the Dolby “left eye” filter. However, some of the LED col-
ors overlap both the “left eye” and “right eye” Dolby filters,
reducing any signal that may be encoded in the relationships
between color channels. To eliminate this overlap, we also
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Figure 3. Schematic view of the three light sources (A, B, C). Six
different colors of LEDs are arranged in clusters, some filtered by
a Dolby “left eye” filter (L) or a Dolby “right eye” filter (R).

filter the LED clusters with Dolby “left eye” or “right eye”
filters as appropriate. Figure 3 depicts the specific arrange-
ment of colored LEDs used in the three light sources, which
are as follows:

A) 5 red LEDs with Dolby “left eye” filter, 5 cyan LEDs
with Dolby “right eye” filter, 1 blue LED, 1 violet LED.

B) 5 green LEDs with Dolby “left eye” filter, 5 violet LEDs
with Dolby “right eye” filter, 1 red LED, 1 orange LED.

C) 5 blue LEDs with Dolby “left eye” filter, 5 orange LEDs
with Dolby “right eye” filter, 1 green LED, 1 cyan LED.

These light sources provide three distinct spectral distribu-
tions, plotted in figure 4. The LED clusters were chosen
such that each light source has approximately equal bright-
ness of red+orange, green+cyan and blue+violet light, ap-
pearing roughly white to the human eye, and having roughly
equal overall intensity when viewed through either Dolby
filter. Note that our method requires somewhat brighter
and/or more LEDs than traditional three-light photometric
stereo, due to the light loss from the filters. Finally, since
our method presumes Lambertian reflectance, we place lin-
ear polarizing filters in front of the camera system and light
sources, tuned to cancel out specular reflections on the sub-
ject. In common with prior work, these filters may be omit-
ted in applications where the subject reflectance is predomi-
nantly diffuse. The beam splitter, LED lights, Dolby filters,
and polarizing filters used in our apparatus are readily avail-
able and inexpensive, and any color cameras may be used
so long as they can be synchronized to each other, making
our system relatively easy to reproduce.

4. Calibration
The matrices Mk, k = 1 . . .K in (5) required for our

method may be obtained through the following calibration
procedure. We photograph material samples with different



Figure 4. Spectral distribution plots of three LED light sources.
A) red, cyan, dim blue, dim violet, B) green, violet, dim red, dim
orange, C) blue, orange, dim green, dim cyan.

known reflectance values r̂t and surface normals nt, satis-
fying:

ck,t = r̂Tt Mknt , k = 1 . . .K , t = 1 . . . T, (6)

where ck,t is the kth color channel of measurement t. We
may then estimate Mk, k = 1 . . .K by:

〈Mk〉 =


〈r̂1nT

1 〉T/‖r̂1‖β
〈r̂2nT

2 〉T/‖r̂2‖β
...

〈r̂TnT
T 〉T/‖r̂T ‖β

 \


ck,1/‖r̂1‖β
ck,2/‖r̂2‖β

...
ck,T /‖r̂T ‖β

 , (7)

where 〈A〉 is the lexicographic concatenation of the
columns of A, and β ∈ (0 . . . 1) is a parameter to bal-
ance the importance of reflectance versus surface normal.
In this work we use β = 1

2 . The choice of material sam-
ples used for calibration affects the accuracy of the method,
since their spectral distributions effectively become a ba-
sis for recovered reflectance in a scene. Therefore, ide-
ally the samples should be made from materials with sim-
ilar spectral distributions as the materials in the scenes to
be captured. If the materials in the scene are unknown
in advance, an approximate calibration may be obtained
with a set of generic materials. For the calibration in this

work, we use the twenty-four color swatches of a MacBeth
ColorCheckerTMchart, photographed at five known orien-
tations (frontal, up, down, left and right). We use linear
sRGB color values for our reflectance basis, which are read-
ily available for the color chart swatches. Figure 5 shows
the color chart photographs used for calibration, and the re-
constructed reflectance and surface normals after calibra-
tion. Using this many materials and orientations for cali-
bration overconstrains the system in (7), resulting in some
residual error. Figure 6 tabulates the per-swatch reconstruc-
tion error over the photographs used for calibration.

Figure 5. Calibration results. Columns are the different orienta-
tions of the color chart: i) frontal, ii) up, iii) down, iv) left, v) right.
A) First three color channels of input photographs. B) Last three
color channels of input photographs. C,D) A,B sampled at chart
swatch centers, averaged over 5× 5 pixel windows. E) Recovered
reflectance. F) Recovered surface normals.
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Figure 6. Reconstruction error after calibration, per swatch. Top
number: relative RMSE of reflectance. Bottom number: RMSE of
surface normal, in degrees. Overall relative RMSE of reflectance
is 0.288, and overall RMSE of surface normal is 24.3◦.



5. Results and Discussion
We show results for our proposed method using the de-

scribed six-color-channel camera system, and the linear
sRGB reflectance basis with generic color-chart-based cali-
bration. Processing times are about one minute per frame on
a single CPU using a straightforward implementation. Fig-
ure 7 shows results for the color chart, at novel orientations.
The recovered reflectance appears stable, and the recovered
surface normals extrapolate beyond the normals used in the
calibration. However, the reconstruction errors tabulated in
Figure 6 indicate that a generic calibration results in signif-
icant bias in the reconstruction. This is primarily caused by
variation in the reflectance spectral distributions of the dif-
ferent materials, which cannot be represented exactly by a
three-dimensional basis. This bias is also noticeable in re-
sults on a toy fish with highly saturated reflectance, shown
in Figure 8. Figure 9 shows the input photographs and

Figure 7. Results for the color chart, at novel orientations. Top:
recovered reflectance. Bottom: recovered surface normals.

Figure 8. Recovered surface normals and reflectance of a toy fish.

reconstruction result for a human face, selected from a se-
quence in which the subject is talking and looking around.
We also obtained a high-quality surface normal data set
of the same subject in a similar pose using the method of
Ma et al. [8] to serve as ground truth. We registered the
ground truth data to one frame of our input data using opti-
cal flow, and drew a mask to separate the face from the back-
ground. (The eyes were also masked since they were closed
in the ground truth data.) Figure 10 shows the RMSE of the
recovered surface normals. As expected, the normals re-
covered using the generic calibration have significant bias.
However, [4] obtains good normals for faces using a one-
dimensional basis, so a higher-dimensional basis should be
sufficient given a scene-dependent calibration. To obtain an

approximate scene-dependent calibration, we modeled the
bias in the recovered normals with respect to the ground
truth normals as a linear transform. We then applied the in-
verse transform to correct the normals, and finally fed the
reflectance and corrected normals back into (7) to compute
the scene-dependent calibration. (All of these operations
considered only those pixels within the masked region.) We
then used this scene-dependent calibration to process the
entire face sequence. Figure 11 shows results for every
tenth frame of the sequence. The color variation in the skin
(freckles, lips, etc.) is captured without corrupting the sur-
face normals. Since no special handling of shadows is done,
shadow regions around prominent features such as the nose
exhibit artifacts, which are most noticeable in the recovered
surface normals. Generally, photometric stereo approaches
must take shadowing or visibility into account, or else suf-
fer from such artifacts wherever some of the lights are not
visible to the surface.

Figure 9. Results for a human face, selected from a dynamic se-
quence. Left top: first three color channels of input. Left bottom:
last three color channels of input. Middle: recovered surface nor-
mals and reflectance, generic calibration. Right: recovered surface
normals and reflectance, scene-dependent calibration.

Figure 10. Comparison to ground truth. Left: ground truth surface
normals using [8], registered using optical flow. Middle: surface
normal error, generic calibration (38.3◦ RSME). Right: surface
normal error, scene-dependent calibration (28.6◦ RSME).



6. Conclusion and Future Work
We have proposed a method to generalize spectrally mul-

tiplexed photometric stereo to more than three color chan-
nels, allowing, for the first time to our knowledge, true si-
multaneous capture of per-pixel photometric normals and
full color reflectance. This enables new applications of pho-
tometric stereo, in dynamic scenes with spatially varying
color and enough motion that optical flow methods fail. We
implemented a practical six-color-channel apparatus using
readily available parts. We showed results demonstrating
that the method works for a variety of subjects, including a
human face. In future work, we would like to address some
of the limitations in our method. For scenes with few dis-
tinct materials, such as a human face, bias in the reconstruc-
tion caused by spectral variation is alleviated with scene-
dependent calibration, but the scene-dependent calibration
technique we employed is cumbersome. We would prefer to
adapt the automatic scene-dependent calibration technique
of [4]. For scenes with many distinct materials, bias may
still persist even with scene-dependent calibration, and it
may be necessary to increase the number of color channels
captured by the camera system to combat this bias. Note
that increasing the number of color channels from three to
six already allows our system to handle more distinct ma-
terials in a scene than previous methods. Artifacts caused
by shadows could possibly be addressed by adapting exist-
ing methods for handling shadows in photometric stereo,
such as the visibility subspace method in [7]. Finally, us-
ing brighter, more distant light sources and/or more light
sources would increase the usable scene volume, and may
improve the signal to noise ratio in the results.
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