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Abstract

We present an image-based technique to rapidly ac-
quire spatially varying subsurface reflectance prop-
erties of a human face. The estimated properties can
be used directly to render faces with spatially vary-
ing scattering, or can be used to estimate a robust
average across the face. We demonstrate our tech-
nique with renderings of peoples’ faces under novel,
spatially-varying illumination and provide compar-
isons with current techniques. Our captured data
consists of images of the face from a single view-
point under two small sets of projected images. The
first set, a sequence of phase shifted periodic stripe
patterns, provides a per-pixel profile of how light
scatters from adjacent locations. The second set
contains structured light and is used to obtain face
geometry. We match the observed reflectance pro-
files to scattering properties predicted by a scatter-
ing model using a lookup table. From these prop-
erties we can generate images of the face under any
incident illumination, including local lighting. The
rendered images exhibit realistic subsurface trans-
port, including light bleeding across shadow edges.
Our method works more than an order of magnitude
faster than current techniques for capturing subsur-
face scattering information, and makes it possible
for the first time to capture these properties over an
entire face.

1 Introduction

Rendering human faces realistically has been a
longstanding problem in computer graphics and a
subject of recent increased interest. There are sev-
eral important application areas that require the re-
alistic rendering of human faces, including com-
puter games, animated feature films, and special ef-
fects for movies. One of the most crucial factors
in creating convincing images of faces is realistic
skin rendering. This is a hard problem because skin

reflectance consists of many complex components,
including light inter-reflection and subsurface scat-
tering.

Subsurface scattering is the phenomenon of light
entering one point on a surface of a material and
scattering inside it before exiting at another point.
In this process, light is not only scattered, but may
also be partially absorbed by the material and these
effects typically vary for different wavelengths. Vi-
sually, subsurface scattering results in a softening
of the appearance of the material, color bleeding
within the material, and diffusion of light across
shadow boundaries. The human visual system can
easily notice the absence of these cues. Light dif-
fusion across illumination boundaries is especially
important for cinematic lighting, where faces are
often in partial lighting and the resulting shadow
edges are soft and blurred.

The dipole diffusion model [6] has been pro-
posed as a fast closed-form approximation for cal-
culating the outgoing radiance due to subsurface
scattering, and is capable of producing very real-
istic images. Rendering with this model, however,
requires an estimate of the scattering and absorption
parameters of the skin. Current methods for cap-
turing these parameters require sophisticated setup,
[6], or specialized devices, [14]. More importantly,
these methods are too slow to capture the parame-
ters over an entire face. Renderings based on this
model consequentially can only use pre-measured
constant parameters. Skin however is not a ho-
mogeneous material, and its scattering properties
change across different people and across a face;
cheeks have more blood, giving them a reddish ap-
pearance, areas with whiskers tend to be darker, and
there may be uneven patches in the skin. Figures 2
and 1 show the importance of using spatially vary-
ing scattering parameters in producing a completely
realistic image.

Our Approach. We propose a technique that
measures the spatially varying scattering properties



Figure 1: An image of a stripe of light projected onto a male subject’s neck(left), and stubble(right) area. Note that
the real image(b), exhibits significantly lesser subsurface scattering in the stubble region as as compared to the neck.
Our approach(c), using spatially varying scattering parameters captures this effect, whereas the rendering using constant
average translucency(a) overestimates the scattering in the stubble region and underestimates the scattering in the neck.

of a subject, using just a camera and projector, with
acquisition times under a minute. This time frame
is small enough to permit a human subject to re-
main sufficiently still. We reduce the number of
images needed by making key assumptions about
light scattering in skin, which are that the scattering
is isotropic, local, and has low spatial frequency.

We estimate a point’s scattering properties using
aScattering Profilethat encodes the amount of light
that scatters to it from nearby locations. We mea-
sure one such profile per pixel (see Figure 4), us-
ing information derived from an image of the sub-
ject taken under shifting patterns of black and white
stripes. The spatially varying scattering properties
of the face are derived from theseScattering Pro-
files by matching them with a lookup table (LUT)
of pre-rendered profiles with known absorption and
scattering properties. The per-pixel estimated prop-
erties and captured geometry are then used to render
the face under new local illumination.

2 Background and Related Work
2.1 Scattering Models

Subsurface transport is described by the Bidirec-
tional Scattering Surface Reflectance Distribution
Function (BSSRDF), S, which relates the outgoing
radianceLo(xo,−→wo) at surface pointxo in the direc-
tion−→wo to the incident fluxφ(xi ,−→wi ) at surface point
xi from the direction−→wi :

dLo(xo,−→wo) = S(xi ,−→wi ;xo,−→wo)dφ(xi ,−→wi ) (1)

Given S, the outgoing radianceLo can be com-
puted by integrating the incident radiance over in-
coming direction and area:

Lo(xo,−→wo) =
∫

2π

∫
A

S(xi ,−→wi ;xo,−→wo)

Li(xi ,−→wi )(n·wi)dwidA(xi) (2)

The scattering of light in a material is dictated
by two optical parameters per wavelength. These
are the scatteringσs and absorptionσa coefficients,
which indicate the fraction of light that is scattered
or absorbed by the medium for each unit length of
distance traveled by the light. The 8-dimensional
BSSRDF can be evaluated accurately by solving the
radiative transport equation, also known as the vol-
ume rendering equation. This is an integral equa-
tion and direct methods to solve it, including Monte
Carlo simulation [4], finite element methods and
photon mapping, are relatively slow.

The diffusion approximation to light propagation
in participating media states that for optically dense
material the behavior of the material is dominated
by multiple scattering [10] and directional depen-
dence is negligible. Hence the BSSRDF can be ap-
proximated faithfully by the 4D diffusion approx-
imation, Rd(xo,xi), which depends only on the in-
coming and outgoing points. [10] presents numer-
ical solutions to solve the diffusion equation, but
does not present a closed-form solution.

The dipole approximation to the diffusion model
is a fast closed-form solution introduced by [6]. It
evaluatesRd(‖xo−xi‖) for a half infinite slab of ho-
mogeneous material as:

Rd(r) = α ′

4π

{
zr

(
σtr + 1

dr

)
e−σtr dr

d2
r

+

zv

(
σtr + 1

dv

)
e−σtr dv

d2
v

}
(3)

Given the scattering and absorption coefficients
of the material,Rd(r) gives the fraction of light that
exits pointxo given an impulse of incoming light at
a pointxi that is distancer away. The total outgo-
ing reflectance atxo in the direction−→wo is given by
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σ ′
t reduced extinction coefficientσ ′

s+σa
α ′ reduced albedoσ ′

s/σ ′
t

σtr effective transport extinction coefficient
√

3σaσ ′
t

lu mean free path1/σ ′
t

ld diffuse mean free path1/σtr
zr distance from real source to surfacelu
zv distance from virtual source to surfacelu(1+4A/3)
r distance‖xo−xi‖
dr distance fromxo to real source

√
r2 +z2

r

dv distance fromxo to virtual source
√

r2 +z2
v

Table 1: Definition of variables.

Equation 4. HereFt,i is the Fresnel transmittance at
the incident point andFt,o is the Fresnel transmit-
tance at the exitant point.

Lo(xo,−→wo) =
1
π

Ft,o(η ,−→wo)
∫

A
Rd(‖xo−xi‖) (4)∫

2π

Li(xi ,−→wi )Ft,i(η ,−→wi )(n·−→wi )dwidA(xi)

Measurement.[6] estimateσ ′
s andσa of skin by

illuminating a small patch on the arm with a thin
beam of white light and fitting the resultant image
values to Equation 3 by a constrained least squares
fit. The DISCO method of [3] extends this tech-
nique to measure the spatially varying properties of
a smooth heterogeneous object. They capture im-
pulse response images of the object to laser light
of different wavelengths for all positionsxi . This
yields the functionRd(xi ,xo) for all points xi and
xo on the surface, which is then used directly to
represent the spatially varying subsurface scatter-
ing properties. The large acquisition times how-
ever make the technique unfeasible for human sub-
jects. [12] also aim to capture the spatially varying
properties of heterogeneous objects, but their fo-
cus is on materials with large mesostructures. They
factor light transport in such materials into a con-
stant diffuse scattering term and spatially varying
mesostructure entrance and exit functions. [14]
capture the translucency of skin using a special-
ized measurement probe, and derive an average
value over a sparse sampling of points on several
faces. This value can then be used to derive scat-
tering and absorption parameters for a target face,
given its diffuse reflectance, Section 5. In contrast,
our technique quickly captures a dense sampling of
spatially-varying translucency across the entire sur-
face of the target face, using the same camera and
projectors usually already present in a typical 3D

scanning setup. In addition to being used to ren-
der spatially varying sub surface scattering, these
parameters can be used to provide a robust aver-
age of the scattering parameters over the entire face.
As shown in Figure 2b, using the average parame-
ters from the given face provide a more accurate
result compared with using pre-estimated constant
parameters,[14].

2.2 Reflectance Fields

A related concept to the 8D BSSRDF is the 8D re-
flectance field [1],R(xi ,−→wi ;xr ,−→wr ), which is a gen-
eralization of the BSSRDF to an arbitrary closed
surface, A. The reflectance field represents the radi-
ant exitant light field,Rr (xr ,−→wr ), from A in response
to every possible incident light field,Ri(xi ,−→wi ).

Image-based relighting methods attempt to cap-
ture the reflectance field of an object and render
from this data. They are capable of producing ex-
tremely realistic images, since they inherently en-
code all the complicated reflectance properties of
the scene. [1] capture a subset of the reflectance
field of a human face by taking basis images of the
subject under directional illumination generated by
a movable light source some distance away. An im-
age of the face under any incident field of direc-
tional illumination can be approximated by a linear
combination of these basis images. However, the
restriction of illumination to distant light prevents
them from being able to simulate the effects of spa-
tially varying light across the face.

[7] use a camera and projector setup to capture a
6D reflectance fieldR(xi ,−→wi ;xr ), which can be used
to relight the scene with local illumination. The
coarse resolution and large acquisition time how-
ever, make this technique inappropriate to apply
to capturing faces. [9] use a similar approach but
greatly reduce the number of images required, and
consequently the acquisition time, by using adap-
tive refinement and Helmholtz reciprocity. Adap-
tive refinement however requires online computer
analysis during capture, which currently cannot be
performed in real time.

3 Choice of Subsurface Scattering
Representation

In this work we fit our observed data to the di-
pole diffusion model in order to estimate the spa-
tially varying subsurface scattering properties of the
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(a) Weyrich06 (b) average translucency (c) spatially varying scattering (d) real image

Figure 2: A curved stripe of light projected over the female subject’s lips.(a) and (b) are rendered with constant
translucency; parameters from [Weyrich06] and an average of our estimated parameters, respectively. Note that the
scattering in (b) has a yellower tone than the real image.(c) is rendered using spatially varying parameters, and comes
closest to capturing the color and influence of the subsurface transport in the real image, (d).

face. Our method of using a lookup table with pre-
calculated profiles is however independent of the
model used. It can just as easily be used to fit other
models, like the Sum of Gaussians that is used in
real time rendering. We choose to use the dipole
model since given its wide use, we believe it is im-
portant and useful to demonstrate that parameters
for this model can be quickly and easily be esti-
mated. Furthermore, the model expresses the data
in a compact representation, just two parameters per
point, which can be represented as maps over the
face that are intuitive and easy to edit and touch up.
These maps are a logical extension of existing maps
such as specular and diffuse maps.

An alternative to fitting the desired model to the
data using a lookup table is to estimate the radial
scattering profileRd(r) directly, without making
any assumptions about the scattering model. Our
decision to forego this approach was based on a
couple of drawbacks. The problem of trying to re-
cover the functionRd(r) at a pointx from images
of x under multiple beams of light (our projected
patterns) can be stated as recovering the impulse
response of a system whose input and output are
known, and falls under the area of signal decon-
volution. In general this problem is considered to
be ill-conditioned, and the solutions, especially for
impulse responses that are Gaussian-like in shape,
are highly sensitive to measurement noise. This is
partly because the power spectrum of these func-
tions quickly becomes very small, which leads to
issues with numerical stability. By fitting the ob-
served data to a model instead, we reduce the num-
ber of unknowns in the system, which makes a ro-

bust estimation possible even with noisy data.

4 Light Patterns for Parameter Esti-
mation

The optical parameters,σ ′
s and σa, of a homoge-

neous translucent material can be accurately deter-
mined by illuminating the surface with a thin beam
of light and fitting Equation 3 to a one dimensional
radial profile of the spread. [6] use a constrained
nonlinear least squares method for this purpose. A
similar approach could be used to estimate spatially
varying properties of a surface by capturing images
of the surface illuminated at all input pointsxi , but
would necessitate taking prohibitively many images
for a real time capture, [3]. In order to reduce the
number of images needed we make three assump-
tions about the material: that it has slowly vary-
ing scattering properties, that the material is opti-
cally dense and that scattering is isotropic [14]. The
assumption of an optically dense material implies
that its behavior is dominated by multiple scatter-
ing, and hence its properties can be faithfully mod-
eled by the diffusion approximation. Furthermore,
an optically dense material will have a short mean
free path and hence the scattering properties of the
material in one part will only effect a small neigh-
boring area.

To estimate per-point optical properties we need
to capture images of the face under a small sequence
of light patterns. Ideally, each image should yield
scattering information for many parts on the face
simultaneously. To meet this goal, instead of mea-
suring the radial decrease in intensity away from a
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(a) fully lit (b) stripes

(c) flattened (d) indirect

Figure 3: Acquired images, top; fully lit image (a), one
of 40 stripe patterns (b), And intermediate images, bot-
tom; fully lit image corrected for light attenuation (c), and
estimate of indirect light (d).

thin beam of light [6], we measure the decrease in
intensity away from a finite-widthline of light that
is projected onto the face. Further more, using the
assumption that light does not travel far within the
skin, we illuminate the skin with multiple stripes of
light simultaneously. Hence, our patterns are peri-
odic stripes of light that are swept across the sub-
ject, Figure 3(c) is an image of one such pattern.

The widths of the stripes and the distances be-
tween them are dictated by conflicting require-
ments. Firstly, to minimize the interference of
neighboring stripes, so that points that fall in the
middle of two stripes are completely dark, the
stripes need to be as far apart as possible. However,
to reduce the number of patterns, and hence the time
needed to capture all the images, we need to keep
the stripes close together. Secondly,the widths of
the stripes should ideally be a single projector pixel.
Practically however, at these low levels of light the

Figure 4: Scattering Profiles of four different points on
the face for the three color channels, used for estimating
translucency. Note that the lips (c) have a comparatively
higher profile in the red channel and the profiles in the
stubble region (d) tend to zero more quickly (indicating
comparatively lower translucency in all channels).

signal that we are trying to observe, the subsurface
scattering, is too low to be accurately distinguish-
able from the camera noise. Hence, to increase the
signal to noise ratio we keep the stripes several pix-
els thick. We found that 8 pixel wide stripes that
are 32 pixels apart, for a total of 40 patterns, is a
good compromise between all these requirements.
The approach presented in [8], which is based on
Hadamard coding, could also be used to generate
single pixel width stripes with better signal to noise
ratio. However, we found the information available
in our data was more than sufficient for estimating
the scattering parameters of interest.

5 Parameter Estimation

We use the images of a subject captured under the
projected stripe patterns to createscattering profiles
for each pixel. A pixel’s scattering profile is a 1D
array of values representing its reflectance response
over time to the shifting patterns. Figure 4 shows
the graphs of four such profiles (with their phase
shifted so that the peak is centered), that were cre-
ated from our 40 input stripe patterns.

The per-pixel scattering and absorption parame-
ters are estimated from these profiles by fitting the
profiles to the dipole model using a lookup table,
similar to [2]. We could also use a least squares
fit to the diffusion equation to estimate these para-
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meters, but we found the LUT based approach to
be faster. Our LUT contains pre-computed profiles
indexed by two optical parameters, and we match
a given input profile against the table to estimate
its parameters. Instead of usingσ ′

s andσa, we use
a different parametrization of the dipole model as
presented in [5], the total diffuse reflectance,Rd,
and the translucency, denoted by the diffuse mean
free path,ld. Given values ofRd and ld, [5] calcu-
late values ofσ ′

s and σa by inverting Equations 5
and 6.

Rd =
α ′

2

(
1+e−

4
3 A
√

3(1−α ′)
)

e−
√

3(1−α ′)(5)

ld =
1

σ ′
t

√
3(1−α ′)

(6)

The advantage of using this re-parametrization is
that the total diffuse reflectance valueRd, which is
the outgoing radiance of a point when all points
around it are illuminated, is available in a fully lit
image of the subject after subtracting specular re-
flection and indirect light, Figure 3 (a). Hence al-
though we build a two-dimensional LUT ofRd vs
ld, for any given pixel we only have to perform a
one-dimensional search for the value ofld, in the
row given by itsRd value.

We estimate the total outgoing radiance at pixel
xo resulting fromp nearby illuminated pixels using
the simplified Equation 7. This equation ignores
Fresnel effects (since these effects are more im-
portant at grazing angles where our data is unre-
liable) and includes the cosine fall-off term inside
Li(xi ,wi). Rd

o(r) is calculated using Equation 3 and
the properties atxo, andb is the constant amount of
indirect light falling on the pixel (section 5.2).

Lo(xo) = b+
p

∑
i=0

Rd
o(r)Li(xi ,−→wi ) (7)

The time profiles in the LUT are constructed by
calculating for each stripe pattern, a pixelxo’s re-
sponse to it as given by Equation 7.p are all pixels
in the camera image that get direct light from the
projector pattern and are also near enough toxo to
influence it’s appearance. The calculation ofp de-
pends on the ratio of projector distances to camera
distances, which in turn depend on the angle be-
tween the projector and the surface point. We as-
sume that the surface is normal to the direction of
the projector, which works well for our results. For
more accurate results we need to either capture the

(a) all color channels (b) green channel

(c) (d) (e) (f)

Figure 5:Visual representation of the number of matches
found for each entry of the LUT for the three color chan-
nels (a). We can clearly see that the red color tends to have
a higher mean free path in skin, and also that it has large
variations across the face compared to the other two chan-
nels. Figures (c)-(f) show the area normalized profiles for
four combinations ofRd andLd shown in (b).

surface from more angles, or use a 3D table that
takes into account the angle of the surface.

In practice we use three different LUTS, one for
each color channel, to maximize the resolution of
our estimated parameters, see Figure 5 (a,b). Each
LUT has a resolution of 200x200, but covers differ-
ent areas in the translucency and reflectivity spectra.
Each location in the LUT contains an area normal-
ized time profile, and the scattering and absorption
parametersσ ′

s andσa corresponding to theRd and
ld values. Four time profiles from different parts of
the LUT are shown in Figure 5 (c)-(f).

5.1 Estimating Parameters using Profile
Matching

The Rd value of a pixel is estimated by using the
pixel’s value in the fully lit image, after the incom-
ing light has been normalized to one (section 7), and
angular light fall off has been accounted for (section
6). We use cross-polarized illumination to ensure
that the observed reflectance values do not contain a
specular component. To determine a pixel’sld value
we use itsRd value to index into the LUT and per-
form a one-dimensional search in the correspond-
ing row for the profile that best matches the area
normalized scattering profile of the pixel. Our error
metric is the sum of squared differences between the
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Figure 6: From the top:recovered translucency, absorp-
tion σa, and scatteringσ ′

s maps for the three color chan-
nels. The white in figures(a,d) represent areas where we
cannot estimate good parameters, see section 8

two profiles, and since this metric varies smoothly
across the table for a given input profile, our search
is implemented using a parabolic minimum finder.
The σa andσ ′

s corresponding to the best matching
profile are then stored in separate scattering and ab-
sorption maps at the pixel location.

Figure 6 shows some of the different maps that
we estimate. We can see that the beard region has
higher absorption and lower translucency values,
which was also visible in Figure 1. The lips have
a higher translucency, and significantly lesser ab-
sorption in the green and blue channels. Figure 5 (a)
shows the number of times a LUT entry is matched
to an input profile, intuitively showing the distribu-
tion of the parametersRd andld over the face.

5.2 Indirect Light Compensation

In areas of concavities the reflectance profiles that
we observe may contain significant amounts of
inter-reflected light. The contribution of this light
transport has to be removed before we fit the sub-
surface scattering model to the reflectance values.
We make the observation that most indirect light on
a point generally arrives from areas that are rela-
tively far and relatively large compared to the stripe
distance: for example, indirect light on a point on
the side of the nose arrives from all over the cheek.
Thus it is a reasonable assumption that, given the
frequency of our stripes, the same amount of indi-

rect light arrives at a particular point on the face re-
gardless of which stripe pattern phase is begin pro-
jected. This assumption is violated in areas with
local geometric detail (such as skin folds), and we
do not expect this technique to produce accurate re-
sults in such regions.

To find the amount of indirect light we first esti-
mate the best matching curve as outlined in section
5.1, and then subtract from the minimum of the in-
put curve the minimum of the matched curve. This
gives us the amount of reflectance that the scatter-
ing model could not account for, most probably due
to the indirect light. To compensate for this light
we subtract its estimated value from the input pro-
file and then rematch the profile to the LUT. Figure
3 (d) shows the amount of indirect light that we esti-
mated for a particular capture session. Note that the
greatest amount of indirect light was calculated to
be in concavities such as the eye sockets and under
the chin, as is expected.

6 Geometry Acquisition and Use

Since the surface of the face is non-planar, it is im-
portant to acquire geometry for both parameter es-
timation and rendering. For parameter estimation
we have to correct for the decrease in light intensity
falling on a point as the angle between its normal
and the light vector increases (see Figure 3(a)). Not
correcting for this light attenuation would lead us to
erroneously conclude that the skin is darker in such
areas. Figure 3(b) shows how the fully lit image
looks after correcting for the cosine light falloff, by
dividing the reflectance value at each pixel by the
cosine of the angle between the light and the nor-
mal vector. This correction is performed for all of
our input images.

For rendering we need the geometry of the face
and the scene. We estimate the geometry by first
deriving a sub-pixel accurate projector-camera cor-
respondence image using the method described in
[11], which reliably distinguishes between illumi-
nation edges in the presence of subsurface scatter-
ing. We then triangulate the correspondence image
using the calibration information of the camera and
projector, [15]. Finally, the geometry is smoothed
to reduce high frequency artifacts resulting from the
extraction.
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σa [mm−1] σ ′
s [mm−1] Translucency

Red Green Blue Red Green Blue Red Green Blue

female lips 0.0657 0.2505 0.2835 1.102 0.9084 0.7982 2.0844 1.0716 1.0426
forehead 0.0836 0.1774 0.2554 1.3079 1.5042 1.1741 1.6928 1.0571 0.9555
cheek 0.0525 0.1653 0.2216 1.2814 1.5000 1.1248 2.1817 1.1004 1.0569
mean 0.075 0.156 0.2254 1.3881 1.5017 1.0969 1.9282 1.2048 1.0988
std. dev. 0.0532 0.0652 0.0703 0.3484 0.3737 0.2496 0.3378 0.1986 0.1524

male lips 0.3227 0.6631 0.6833 0.7819 0.6710 0.5209 0.9670 0.6139 0.6365
forehead 0.4761 0.3163 0.442 1.1415 1.2267 0.8851 0.6578 0.8264 0.7538
stubble 0.4056 0.6024 0.6707 0.9237 0.8621 0.6648 0.7863 0.6147 0.6100
mean 0.2047 0.3595 0.4691 1.1602 1.1586 0.8373 1.1926 0.8164 0.7606
std. dev. 0.0989 0.1148 0.1179 0.1823 0.1985 0.1354 0.3127 0.15611 0.1325

Weyrich[06] 1.8155 1.0213 0.6453

Jensen[01] skin1 0.032 0.17 0.48 0.74 0.88 1.01 3.6733 1.3665 0.6827
skin2 0.013 0.070 0.145 1.09 1.59 1.79 4.8215 1.6937 1.0899

Table 2:Estimated parameters for different areas on two different subjects, female and male. The last row is provided
for comparison against constant parameters estimated in previous work,[14], and [6].

7 Results and Discussion

Setup. Our setup consists of a projector and cam-
era pair aimed at the subject. We use a high reso-
lution camera (2700x1700 Basler A404) to capture
detailed images of the skin in a short amount of
time. The projector and camera are synchronized
by assigning alternating colors to a small square
in the projector images. A photo receptor detects
these changes and triggers the camera. The setup
is capable of displaying and capturing five patterns
per second, with two images of different exposures
captured for each projected pattern. The differently
exposed images are compiled into high dynamic
range images after subtracting the camera and pro-
jector black level. We calibrate the incident illumi-
nation by taking an image of a reflectance standard,
and we divide all captured images by its average
value. Finally, we cross-polarize the camera and the
projector to eliminate the specularly reflected light,
which is necessary for correctly fitting our scatter-
ing model to the observed values. The polarizers are
put on diagonally to avoid color shifts. We project a
total of 88 images; 40 stripe patterns, and 48 struc-
tured light images.

Table 2 shows a comparison of the estimated pa-
rameters for different subjects and different points
on the face. There is a significant difference in both
parameters across the male and female subject; the
male subject’s skin exhibits higher absorption and
smaller scattering. Our parameters are on the same

scale as previously estimated parameters, although
the color distribution is slightly different. In par-
ticular, [6] predict a greaterσ ′

s for the blue channel
than the red channel. This might be because of dif-
ferent color response of our systems, or because [6]
obtain measurements on the subject’s arm.

We validate our parameters with renderings of
faces produced under different incident illumination
and we compare them to ground truth images cap-
tured under cross-polarized illumination to elimi-
nate specular reflections. Our renderings do not re-
produce the complete reflectance of a person’s face,
including the specular surface reflection and indi-
rect light, which are components of a complete face
scanning system (e.g. [1], [14]). Using the spatially
varying properties that we estimated from section
5 and the geometry information from section 6, we
render the subsurface response of the face using the
method outlined in [6]. We perform a color cor-
rection step on our renderings using a 3× 3 color
matrix.

Figure 1 shows a comparison of our approach
with an image rendered with constant translucency
(an average of the estimated translucency values
over the entire face), and spatially varying reflec-
tivity, similar to the approach proposed in [14]. The
presence of the whiskers inside the skin on the right
side of the image reduces its translucency, an effect
captured by our technique Figure 1 (c). Note that
just a constant translucency parameter, Figure 1 (a),
cannot account for this. Figure 2 shows that con-

8



stant parameters also cannot predict correctly the
response of skin in the lip region. Figure 7 shows
a comparison between a synthetic rendering created
using our technique and a real image captured un-
der similar light. Notice that our technique correctly
renders the scattering of light across the illumina-
tion edge and the skin color in fully lit areas.

8 Limitations and Future Work

There are several limitations to our method that sug-
gest logical directions for future work. Since we
capture images from a single viewpoint both our
geometry and estimated parameters are unreliable
in areas where the angle between the surface nor-
mal and the projector or camera direction is large
(for example the white areas in Figure 6 a and b), or
where they are not in focus. In practice the acqui-
sition should be repeated for multiple viewpoints,
e.g. left, front, and right, and the results merged so
that the most fronto-parallel data is used from each
position. Alternatively, we could create a 3D LUT,
where the third dimension represents the angle be-
tween the normal at a point and the projector direc-
tion. Since these angles are already known for each
point, the 3D table would not impose any extra cost
for searching. Although our LUT-based approach
to estimation is extremely fast, it assumes locally
flat geometry. This assumption is valid for most of
the images, but will cause miscalculation of para-
meters of points near geometric discontinuities. For
such places, a more accurate but more expensive ap-
proach would be to use the geometric information
and a least squares solution. A good compromise
however is to manually correct such errors with in-
formation from the neighboring area, which is easy
since the maps that we estimate are images that can
easily be edited and touched up.

9 Conclusion

We have presented an image based acquisition sys-
tem that quickly and efficiently estimates the scat-
tering properties of an optically dense translucent
non-homogeneous material. Our system enables the
capture of spatially varying properties of skin at a
high resolution, which was not possible earlier be-
cause of the large time requirements of previous ap-
proaches. Our method can also be used to estimate
improved average scattering parameters for the skin
more conveniently and efficiently than earlier point-

(a) real image

(b) synthetic rendering

Figure 7:Comparison of a rendering using our estimated
parameters with a real image under spatially-varying inci-
dent illumination (high exposure on left, low exposure on
right). The amount of scattering along the shadow edge is
generally consistent between the two (except for the indi-
rect illumination which is not simulated).

sampling based approaches. The technique is min-
imally invasive, using neither potentially dangerous
lasers [6] or specialized equipment [14]. Our data
representation is compact, only two floating-point
values per pixel, and can be used to render realistic
faces under local illumination in a number of ways.
Our data capture approach is a logical addition to
existing face-scanning such as [1], [13],[14] and can
easily be incorporated in such a system since it only
requires a projector and camera.
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