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Abstract. Registration algorithms are an essential component of many computer
graphics and computer vision systems. With recent technological advances in RGB-
D sensors (color plus depth), an active area of research is in techniques combining
color, geometry, and learnt priors for robust real-time registration. The goal of
this course is to introduce the mathematical foundations and theoretical explana-
tion of registration algorithms, in addition to the practical tools to design systems
that leverage information from RGBD devices. We present traditional methods
for correspondence computation derived from geometric first principles, along with
modern techniques leveraging pre-processing of annotated datasets (e.g. deep neu-
ral networks). To illustrate the practical relevance of the theoretical content, we
discuss applications including static and dynamic scanning/reconstruction as well
as real-time tracking of hands and faces. An up-to-date version of the course notes,
as well as slides and source code can be found at http://gfx.uvic.ca/teaching/
registration.
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Introduction

Recent technological advances in RGB-D sensing devices, such as the Microsoft Kinect,
facilitate numerous new and exciting applications, for example in 3D scanning [44] and
human motion tracking [39]. While affordable and accessible, consumer-level RGB-D
devices typically exhibit high noise levels in the acquired data. Moreover, difficult light-
ing situations and geometric occlusions commonly occur in many application settings,
potentially leading to a severe degradation in data quality. This necessitates a particular
emphasis on the robustness of image and geometry processing algorithms. The combina-
tion of geometry (3D) and image (2D) registration is one important aspect in the design
of robust applications based on RGB-D devices. This course introduces the main con-
cepts of 2D and 3D registration and explains how to combine them efficiently. To enable
dense correspondence computation and non-rigid registration between shapes of signifi-
cant deformations and shape variations, we present a deep learning framework based on
convolutional neural networks.
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1 Fundamentals of Registration
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In pairwise registration we desire to align a source surface X
to a target surface Y . To formalize this problem, we intro-
duce a surface Z that is a transformed or deformed version
of X that eventually aligns with Y . To solve the registration
problem numerically, we represent the continuous surface X
by a set of points X = {xn ∈ X , n = 1 . . . N}; different
sampling strategies can be found in [32]. The matrix X, of
dimensions D × N , will represent a set of points, the point
xn is contained in its n-th column.

We start by describing a technique capable to estimate the
(rigid) transformation between X and Y as far as a few correct correspondences are given
in input. We then introducine the ICP algorithm that leverages object proximity to
automatically compute registration correspondences.

Shape Matching Problem Let X = {x1,x2, . . . ,xN} and Y = {y1,y2, . . . ,yN} be
two set of corresponding points in RD. The set X is rigidly transformed into Z = RX+t
by a rotation matrix R and translation vector t.

x1

x2

x3

x4

x5 y1

y2

y3

y4

y5

The rigid transformation that optimally aligns the two point sets is the solution of the
least-squares optimization problem:

(R, t) = arg min
R,t

N∑
n=1

‖(Rxn + t)− yn‖22 (1)

As derived in [35], the optimal solution is computed by arranging the points in two 3×N
matrices X̄ and Ȳ whose columns x̄n and ȳn are:

x̄n = xn −
1

N

N∑
n=1

xn, ȳn = yn −
1

N

N∑
n=1

yn (2)

By computing the singular value decomposition of the D × D covariance matrix X̄Ȳ T ,
i.e. UΣV T = SVD(X̄Ȳ T ), the optimal rotation and translation are given respectively by

R = V

1
1

det(V UT )

UT , t =
1

N

N∑
n=1

yn −R
1

N

N∑
n=1

xn (3)

As we are only interested in rotations, the term det(V UT ) factors out reflections as
potential solutions of our optimization [35, Sec.3].
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Iterative Closest Point (ICP) Given correct pairwise correspondences, the shape
matching problem computes the optimal (rigid) transformation between two object. How-
ever, in most situations ground truth correspondences are not available. The Iterative
Closest Point algorithm (ICP) addresses this problem through local optimization. In
the first step, given Z and samples zi ∈ Z, we compute yi = ΠY(zi), the closest point
correspondence of zi onto Y . In the second step, these correspondences are used to solve
the shape matching problem; see Eq. 1. This process is iterated until the optimization
converges to a local minima. The fundamental assumption made by ICP is that the sur-
faces are in rough initial alignment, therefore closest point correspondences approximate
ground truth correspondences.

X = Z0

Y
Z1 Z1

Z2=Y

find closest points shape matching find closest points shape matching

Derivation of ICP Given a source surface Z, a target surface Y , we introduce a
matching energy measuring the proximity of Z to Y . The metric ϕ(z,Y) measures the
distance between a point z and the surface Y . Also, as we want to numerically optimize
this energy, the integral is discretized by sampling Z:

Ematch(Z) =

∫
Z
ϕ(z,Y)dz ≈

N∑
n=1

ϕ(zn,Y) (4)

We then re-write the metric ϕ by expressing it as the solution of an optimization problem
measuring the distance between zn and the closest point yn on the surface Y :

ϕ(zn,Y) = min
y∈Y

ϕ(zn,y), yn = ΠY(zn) = arg min
y∈Y

ϕ(zn,y) (5)

For simplicity, we use the squared Euclidian distance as our metric ϕ(z,y) = ‖z−y‖22; see
Sec. 3 for other metrics. By introducing of a set of auxiliary variables Y , and remembering
how Z = RX + t, we can rewrite our rigid registration problem as:

arg min
R,t,Y

N∑
n=1

‖(Rzn + t)− yn‖22 (6)

Our problem can then be solved by alternating optimization:

arg min
Y

N∑
n=1

‖(Rxn + t)− yn‖22, arg min
R,t

N∑
n=1

‖(Rxn + t)− yn‖22 (7)

In the first step, we optimize for closest point correspondences (Eq. 5), while in the second
step we optimize for the optimal transformation (Eq. 1). This alternating optimization
is iterated until convergence to a local minima.
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2 Image/Geometry Registration Framework

In registration, the alignment of a source model onto a target model can be rigid or
non-rigid depending on the type of object being scanned. We formulate the registration
as the minimization of a compound energy:

Ereg = Ematch + Eprior. (8)

The matching energy Ematch measures the proximity of source to target. The prior energy
Eprior quantifies the deviation from the type of transformation or deformation that the
source is allowed to undergo during the registration, for example, a rigid motion or an
elastic deformation. The goal of registration is to find a transformation of the source
model that minimizes Ereg to bring the source into alignment with the target. For data
acquired with RGB-D devices, registration can utilize both the geometric information
encoded in the 3D depth map, as well as the color information provided by the recorded
2D images. We show that Equation 8 provides a unified way to formulate both image
and geometry registration, which simplifies their integration.

2.1 Geometry Registration

In 3D registration we want to align a source surface X embedded in R3 to a target surface
Y in R3. We recall how Z that is a transformed or deformed version of X that eventually
aligns with Y .

2.1.1 Matching energy

The matching energy measures how close the surface Z is to the surface Y . The similarity
of two geometric models is measured by the (symmetric) Hausdorff distance/metric, dZ↔Y
obtained as the maximum of two asymmetric terms:

ϕZ→Y = maxz∈Z [miny∈Y ϕ(z,y)] (9)

ϕY→Z = maxy∈Y [minz∈Z ϕ(z,y)] (10)

ϕZ↔Y = max{ϕZ→Y , ϕY→Z} (11)

ϕZ→Y

ϕY→Z

ϕZ↔Y

Z
Y
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ϕY→Z ≈ 0

ϕZ→Y 6= 0

foreground

background

z
Πf(Y)(z)

f(Z) f(Y)

image/projective space

Zb
Za

Zc

Figure 1: (a) The Hausdorff distance is non-zero in monocular acquisition, even when
Z and Y are in perfect alignment. (b) Three different configurations of Z equivalently
minimize the data-to-model residuals. (c) Only Za is optimal as it does not cross the
background view rays. (d) These constraints can be encoded by minimizing model-to-data
correspondences in 2D projective space space.

In computer graphics, the Hausdorff distance is often used in multi-resolution modeling to
measure the difference between two different representations of the same 3D object [14].
Typically, squared euclidean distances are employed as metrics ϕ(z,y) = ‖z− y‖22.

Differentiable Hausdorff To derive a differentiable Hausdorff metric, we replace the
max operator in Eq. 9 and Eq. 10 by an integral, and the one in Eq. 11 by a sum:

ϕZ↔Y ≈
∫
z∈Z

min
y∈Y
‖z− y‖22 dz +

∫
y∈Y

min
z∈Z
‖z− y‖22 dy (12)

We can further simplify this expression by leveraging the projection operator introduced
in Eq. 5, and replace integrals by discrete sums, reducing our Hausdorff metric to an
ICP-like problem with two-way correspondences [42]:

ϕZ↔Y ≈
∑
z∈Z

‖z−ΠY(z)‖22︸ ︷︷ ︸
model-to-data

+
∑
y∈Y

‖y −ΠZ(y)‖22︸ ︷︷ ︸
data-to-model

(13)

Monocular Hausdorff When the sensor data Y has been measured by a monocular
acquisition system, the metric in Eq. 13 suffers a fundamental limitation: even if the
digital model is in perfect alignment with the data, that is when ϕY→Z = 0, overall
our metric might be non-zero as ϕZ→Y 6= 0; see Fig. 1a We can resolve this problem
by computing the ϕZ→Y in projective/camera space (2D) rather than in 3D. To achieve
this, we first rasterize our digital model in the camera coordinate system and generate
a silhouette image f(Z); see Fig. 1d. We then compare this silhouette to the silhouette
from the sensor f(Y ). Our ϕZ→Y is then effectively re-written as a 2D ICP registration
energy:

ϕZ↔Y ≈
∑

z∈f(Z)

‖z−Πf(Y )(z)‖22︸ ︷︷ ︸
model-to-data (2D)

+
∑
y∈Y

‖y −ΠZ(y)‖22︸ ︷︷ ︸
data-to-model (3D)

(14)

The function f : R3 → R2 projects a 3D point to the sensor’s image plane.
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Monocular Correspondences Fast motion and monoc-
ular acquisition pose a particular challenge to iterative reg-
istration algorithms. In the inset figure we illustrate two
scenarios. In the first, motion is small and closest-point cor-
respondences register our model to input data effectively. In
the second, fast motion results in correspondences that map
to the back of the model, resulting in a local minima of registration. Note that to solve this
problem it is not sufficient to discard correspondences whose normals are back facing [32].
Instead, we can overcome this problem by computing closest point correspondences to a
model that has been backface culled [39]. Alternatively, the normals of zn can be included
in the registration energy to penalize correspondences mapping to the back of the model;
however, such an approach is only suitable for algorithms performing a joint optimization
over Z and its correspondences to Y [40].

2.1.2 Prior energy

We now discuss several prior energies that can be used for registration. These energies
can also be combined to build more sophisticated priors. Priors encode properties of the
scanned objects. For example, when scanning rigid objects, a global rigidity prior can be
used to limit the allowed transformations to rotations and translations. For deforming
objects, for example a human body, geometric priors are often employed that try to mimic
physical behavior such as an elastic deformation. We describe a simple local rigidity
prior that approximates elastic deformations and facilitates efficient implementations.
More complex deformation behavior can be captured using a data-driven approach. One
popular method is based on a collection of sample shapes that represent the space of
space of allowed deformations. Using dimensionality reduction, for example principal
component analysis, efficient linear models can be derived that are suitable for realtime
registration algorithms.

Global rigidity. The global rigidity of the 3D registration can be measured as

Erigid(Z,R, t) =
n∑
i=1

‖zi − (Rxi + t)‖22, (15)

where R ∈ R3×3 is a rotation matrix and t ∈ R3 a translation vector. In this case, the
deformed surface Z tries to follow a rigid transformation of the original surface X .
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Local rigidity. The local rigidity energy, following [36, 8], can be expressed as:

Earap(Z,R{1..n}) =
n∑
i=1

∑
j∈Ni

‖(zj − zi)−Ri(xj − xi)‖22, (16)

where the Ri ∈ R3×3 are rotation matrices and Ni is the set of indices of the neighboring
points of xi. In this case, each local neighborhood on the surface Z tries to follow a rigid
transformation of its corresponding local neighborhood on the surface X . Other local
rigidity energies can also be used as prior, see for example [7, 37].

Linear model. A 3D linear shape model can be defined using a matrix P containing
the shape model basis, and a mean shape vector m [15, 49, 39]. A shape s can be defined
as:

s = Pd + m, (17)

where d is a vector containing the basis coefficients. A linear model prior energy can be
formulated as the deviation of the vertices from the linear model

Eprior(Z,d) =
n∑
i=1

‖zi − (Pid + mi)‖22, (18)

where Pi and mi are the part of P and m corresponding to the vertex zi.

2.1.3 Optimization

How to best optimize the registration energy depends on the prior energy. In this section
we show, as an example, how to optimize a registration energy for two applications: rigid
scanning and non-rigid modeling.

Rigid scanning Since single depth maps acquired with the RGB-D sensor exhibit
high noise levels and do not cover the whole surface of the 3D object, an aggregation
procedure is typically applied to obtain a complete model with reduced noise level. In
order to aggregate multiple scans over time, different methods can be used [50, 51, 27].
The classical approach is to perform a 3D rigid registration of the currently acquired scan
of the object with the already accumulated 3D data.
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The pairwise 3D alignment can be formulated as

E(Z,R, t) = w1Ematch + w2Erigid (19)

Ematch =
n∑
i=1

‖zi −ΠY(zi)‖22

Erigid =
n∑
i=1

‖zi − (Rxi + t)‖22

where the matching energy is combined with a global rigidity prior. To optimizeE(Z,R, t)
we linearize the rotation matrix approximating cos θ ≈ 1 and sin θ ≈ θ [30]:

R ≈ R̃ =

 1 −γ β
γ 1 −α
−β α 1

 . (20)

The alignment is computed by solving iteratively

arg min
Zt+1,R̃,t̃

n∑
i=1

w1‖zt+1
i −ΠY(zti)‖22 + w2‖zt+1

i − (R̃(Rtxi + tt) + t̃)‖22, (21)

where t is the iteration number and z0
i = xi. As ΠY(.) is a non linear function that is

difficult to optimize with, we use in the optimization the previous estimate ΠY(zti). This
correspond to the point-to-point matching error [3]. To speed up the convergence of the
optimization [28] one can linearize ‖zt+1

i − ΠY(zti)‖2 at ΠY(zti) which gives nTi (zt+1
i −

ΠY(zti)), where ni is the normal of the surface Y at ΠY(zti). This leads to the point-to-
plane matching error [12]. The optimization can be reformulated as

arg min
Zt+1,R̃,t̃

n∑
i=1

w1

[
nTi (zt+1

i −ΠY(zti))
]2

+ w2‖zt+1
i − (R̃(Rtxi + tt) + t̃)‖22. (22)

Both Equation 21 and Equation 22 are quadratic, and therefore, can be optimized by
setting the partial derivatives to zero by solving a linear system. During the optimization,
it can be advantageous to apply a Tikhonov regularization to the parameters of the rigid
motion as linearizing the rotation matrix assumes that the angles are small.

It is interesting to note that when w2 = +∞ then zi can be replaced into the matching
energy by Rxi + t leading to a registration energy

E(R, t) =
n∑
i=1

‖(Rxi + t)−ΠY(Rxi + t)‖22. (23)

This energy can be minimized in a similar spirit by linearizing the rotation matrix and
iteratively solving a linear system. Other approaches can be found in [16].

Non-rigid registration Registering a shape template towards a scanned 3D object
allows to obtain a complete and clean 3D mesh [22]. An example is given below in the
context of face modeling. In this case, the morphable model of Blanz and Vetter [4] that
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Figure 2: Registration of a morphable model towards the scanned face.

represents the variations of different human faces in neutral expression is registered to a
scan of a face. Non-rigid modeling using a morphable model can be formulated as

E(Z,d,Ri|ni=1,R, t) = w1Ematch + w2Erigid + w3Emodel + w4Earap (24)

Ematch =
n∑
i=1

‖zi −ΠY(zi)‖22

Erigid =
n∑
i=1

‖zi − (Rxi + t)‖22

Emodel =
n∑
i=1

‖zi − (Pid + mi)‖22

Earap =
n∑
i=1

∑
j∈Ni

‖(zj − zi)−Ri(xj − xi)‖22

(25)

A local rigidity energy is added to the optimization in order to get an accurate result, as
the morphable model represents the large-scale variability but might not capture small
scale details. As previously, we solve iteratively

arg min
Zt+1,d,R̃i|ni=1,R̃,t̃

n∑
i=1

w1(n
T
i (zt+1

i −ΠY(zti)))
2 + w2‖zt+1

i − (R̃(Rtxi + tt) + t̃)‖22+

w3‖zt+1
i − (Pid + mi)‖22 + w4

∑
j∈Ni

‖(zt+1
j − zt+1

i )− R̃iR
t
i(xj − xi)‖22, (26)

which corresponds to solving a linear system.

2.2 Image Registration

In image registration we want to register a source image I to a target image J. During
the registration process, the 2D pixel grid of the source image X = {xi ∈ R2, i = 1 . . . n}
is deformed to Z = {zi ∈ R2, i = 1 . . . n} to match the target image.

2.2.1 Matching energy

We define I(x) as the pixel value of the image I located at the position x. The matching
energy measures the color similarity between the source image and the target image
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wrapped onto the deformed grid Z

Ematch(Z) =
n∑
i=1

‖I(xi)− J(zi)‖22. (27)

2.2.2 Prior energy

Similarly to 3D geometry registration, we can use different prior energies that can be
combined to build more complex priors.

Lucas-Kanade. In the Lucas-Kanade algorithm [25] the deformation is assumed to be
constant within a patch around each pixel. This corresponds to the prior energy

ELK(Z) =
n∑
i=1

∑
j∈Ni

‖(zj − xj)− (zi − xi)‖22, (28)

where Ni is the set of indices of the neighbors of xi.

Horn-Schunck. In the Horn-Schunck algorithm [19] the smoothness of the flow is de-
fined using a Laplacian operator

EHK(Z) =
n∑
i=1

‖(zi − xi)− |Ni|−1
∑
j∈Ni

(zj − xj)‖22, (29)

where |Ni| is the cardinality ofNi. This energy measures for each grid vertex the deviation
of its deformation from the mean deformation of its neighbors.

2.2.3 Optimization

In this section we show, as an example, how to optimize the matching energy combined
with the laplacian smoothness energy. This is similar to the method presented in [19].
Our optimization energy is:

E(Z) = w1Ematch + w2EHK (30)

Ematch =
n∑
i=1

‖I(xi)− J(zi)‖22

EHK =
n∑
i=1

‖(zi − xi)− |Ni|−1
∑
j∈Ni

(zj − xj)‖22
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To solve this optimization we linearize J(.) at the current estimate and solve iteratively

arg min
Zt+1

n∑
i=1

w1‖I(xi)− J(zti)−∇J(zti)
T (zt+1

i − zti)‖22+

w2‖(zt+1
i − xi)− |Ni|−1

∑
j∈Ni

(zt+1
j − xj)‖22. (31)

where ∇J =
[
∇Jx ∇Jy

]T
is the image gradient, with ∇Jx the image gradient in x

direction and ∇Jy the image gradient in y direction. As previously, the minimization
can be computed by setting the partial derivative to zero, which corresponds to solving
a linear system.

2.3 2D/3D Registration

We show how to combine 2D image registration and 3D geometry registration to best
utilize the data provided by the RGB-D sensor. More specifically, we want to register a
surface X ⊂ R3 with color information I, i.e. a texture mapped surface, to a 3D surface Y
with corresponding color image J. As previously, the source X is deformed to a surface Z.
We sample the continuous surface X to obtain a set of points X = {xi ∈ X , i = 1 . . . n}.
We define their corresponding points on the deformed surface Z as Z = {zi ∈ Z, i =
1 . . . n}. The color information of sample point xi is given by I(xi).

2.3.1 Matching energy

We formulate the energy measuring the quality of the 2D and 3D alignment as follow

Ematch(Z) =
n∑
i=1

w1‖zi −ΠY(zi)‖22 + w2‖I(xi)− J(f(zi))‖22. (32)

The first term is the matching energy presented in Section 2.1. The second term is similar
to the 2D matching energy presented in Section 2.2. The only difference is the additional
function f : R3 → R2 that projects a 3D point zi to the 2D image J. For example this

function could be a perspective projection of the form f(zi) =
[
fzi,x/zi,z fzi,y/zi,z

]T
.
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Neutral

Figure 3: A blendshape model composed of 48 expressions.

2.3.2 Optimization

We illustrate 2D/3D registration in the context of a face tracking system that combines
the 2D/3D matching energy with a 3D blendshape prior. A blendshape representation
is a linear model defined as a set of blendshape meshes B = [b0, ...,bn] where b0 is the
rest pose and bi, i > 0 are different expressions. A new expression can be generated as
T = b0 + Bd, where B = [b1 − b0, ...,bn − b0]. The blendshape model shown below is
inspired from Ekmans Facial Action Coding System [17]. Realtime face tracking using
an RGB-D device can be formulated as a 2D/3D registration of the blendshape model to
the 2D and 3D data [49]. The registration energy can be formulated as

E(Z,d,R, t) = w1Ematch geometry + w2Ematch color + w3Emodel+rigid (33)

Ematch geometry =
n∑
i=1

‖zi −ΠY(zi)‖22

Ematch color =
n∑
i=1

‖I(xi)− J(f(zi))‖22

Emodel+rigid =
n∑
i=1

‖zi − (R(Bid + b0
i ) + t)‖22

To solve this optimization we linearize J(f(.)) at the current estimate

n∑
i=1

‖I(xi)− J(f(zt+1
i )‖ ≈ ‖I(xi)− J(f(zti))−∇J(f(zti))

T ∂f(zti)

∂zi
(zt+1
i − zti)‖22. (34)
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For a perspective projection f(zi) =
[
fzi,x
zi,z

fzi,y
zi,z

]T
we have

∂f(zi)

∂zi
=

[
f

zi,z
0 −fzi,x

z2i,z

0 f
zi,z

−fzi,y
z2i,z

]
. (35)

In [49], the global rigidity is decoupled leading to a two steps optimization procedure. In
a first step, a 2D/3D alignment of the blendshape model is computed

arg min
Zt+1,dt+1

n∑
i=1

w1(n
T
i (zt+1

i −ΠY(zti)))
2+

w2‖I(xi)− J(f(zti))−∇J(f(zti))
T ∂f(zti)

∂zi
(zt+1
i − zti)‖22+

w3‖zt+1
i − (Rt(Bid

t+1 + b0
i ) + tt)‖22, (36)

in a second step, a 3D rigid alignment is performed

arg min
Rt+1,tt+1

n∑
i=1

‖zt+1
i − (Rt+1(Bid

t+1 + b0
i ) + tt+1)‖22. (37)

These two steps are repeated alternatively until convergence. The first step can be
computed by solving a linear system. The second step can be solved using [16] or by
linearizing the rotation matrix. For tracking, another 2D matching energy can be added
to the system:

Ematch(Zt+1) =
n∑
i=1

‖Jt(f(zti))− Jt+1(f(zt+1
i ))‖22. (38)

This optical flow energy enforces color consistency over time by measuring the variation
of color from the previous image frame Jt to the current frame Jt+1 for each zi.

3 Robust Registration

In registration, outliers are not only introduced by corrupted sensor measurements, but
also by partial overlaps - many samples on the source simply do not have an ideal cor-
responding point on the target shape. To address this problem, various techniques rely
on a set of heuristics to either prune or downweigh low quality correspondences. Typical
criteria include discarding correspondences that are too far from each other, have dissim-
ilar normals, or involve points on the boundary of the geometry; see [32] for details. As
we will see next these heuristics are related to the optimization of robust functions. In
this section we will consider robust functions as alternatives to the Euclidean metric and
introduce a suitable optimization technique to use them efficiently.

In previous sections, we always considered an energy composed by terms like ϕ(ε(p)),
where ϕ(ε) = ε2 and ε(p) is the euclidean norm of the residual vector with parameters p.
This squared Euclidian distance metric is ideal for the data corrupted by Gaussian noise
as it is the maximum-likelyhood solution of the problem [10, Sec. 7.1.1]. However, it is
not robust to outliers which are common in real world data acquired by RGB-D devices.

14



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1
2
x2

1

{
1
2
x2 if |x| 6 τ

1
2
τ2 otherwise

{
1 if |x| 6 τ
0 otherwise

τ = 0.80

τ = 0.64

τ = 0.48

τ = 0.32

|x|p p = 0.9
p = 0.7
p = 0.5
p = 0.3

p|x|p−2

Figure 4: (top) The robust norms ϕ. (bottom) The associated weight functions w.

In registration, robustness can be obtained by exploiting robust functions [26]. In this
framework, ϕ(ε) acts as a “penalty” function – a function measuring the influence that
a certain residual has in the optimization. Given one of these functions, our robust
optimization can be expressed as

arg min
p

n∑
i=1

ϕ(εi(p)). (39)

In Fig. 4 we show a few examplar commonly used penalty functions, note how these all
posses properties like radial monotonicity and symmetry [18]. This optimization problem
in Equation 39 can be solved using Iteratively Re-Weighted Least Squares (IRLS) by
solving a sequence of problems of the form

arg min
p

n∑
i=1

αi εi(p)2. (40)

To understand how to compute the weights αi first notice that the optima of Eq. 39 can
be obtained by vanishing its gradient, which can be computed by a simple application of
the chain rule (note we only look at one element of the sum)

∂ϕ(ε(p))

∂p
= ψ(ε(p))

∂ε(p)

∂p
= w(ε(p))ε(p)

∂ε(p)

∂p
, (41)

where ψ(x) = ∂ϕ(x)/∂x for compactness of notation and w(x) = ψ(x)/x is the so called
weighting function. Interestingly, the gradient of Eq. 40 is

∂α ε(p)2

∂p
= α ε(p)

∂ε(p)

∂p
. (42)

We can now see that by setting α = w(ε(p)) the two gradients become equal. However,
as the optimal weights α∗i = w(εi(p

∗)) are not available, we use an iterative approach
where at each iteration the weights are computed using the previous iteration

arg min
pt+1

n∑
i=1

w(εi(p
t))εi(p

t+1)2. (43)
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This scheme is know as Iteratively Re-Weighted Least Squares (IRLS) and is related to
majorization-minimization. The basic idea of majorization-minimization is to iteratively
minimize a function always larger or equal to the objective function and with at least
one point in common. If these requirements are fullfilled the algorithm converges to a
minimum [45].

Trimmed Metrics. Discarding unreliable correspondences is undoubtedly the simplest
and most common way of dealing with outliers [32]. This can as well be formulated by
Eq. 39, as it corresponds to a weight function like the one in Fig. 4 (bottom-middle)
whose corresponding penalty function is a truncated squared euclidean norm Fig. 4 (top-
middle). Even though this is trivial to implement, the local support of the weight function
is problematic: if the souce surface is too far from the target surface the registration
process will not proceed as all the weights would be zero valued. A possible solution is
to dynamically adapt the threshold value by analyzing the distribution of residuals. For
example, when the ratio of outliers versus inliers is known a priori, then the threshold
can be readily estimated [13].

Sparse Metrics. The shortcomings of trimmed metrics can be overcome by considering
sparse metrics. The penalty functions for sparse metrics take the form ϕ(ε) = |ε|p, see
Fig. 4 (bottom-right). An important observation is that the weight functions of p-norms
tend to infinity as we approach zero giving a very large reward to inliers. Moreover,
contrary to trimmed metrics, p-norms weakly penalize outliers leading to a more stable
approach when target and source are far apart. This metric has been demonstrated
successful in [9].
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Figure 5: A neural network can be trained to extract a feature descriptor and predict the
corresponding segmentation label on the human body surface for each point in the input
depth maps. Per-vertex descriptors are generated for 3D models by averaging the feature
descriptors in their rendered depth maps. The extracted features can then be used for
example to compute dense correspondences.

4 Correspondence computation with Deep Learning

The success of registration techniques relying on closest-point correspondences generally
relies on the deformation between source and target shapes being reasonably small, with
sufficient overlap. While local shape descriptors [31] can be used to determine correspon-
dences between surfaces that are far apart, they are typically sparse and prone to false
matches and require manual clean-up. Dense correspondences between shapes with larger
deformations can be obtained reliably using statistical models of human shapes [2, 6], but
the subject has to be naked [5]. For clothed bodies, the automatic computation of dense
mappings [20, 24, 29, 11] have been demonstrated on full surfaces with significant shape
variations, but are limited to compatible or zero-genus surface topologies. In this section,
we present a deep neural network technique to compute dense correspondences between
shapes of clothed subjects in arbitrary complex poses [48]. The input surfaces can be a
full model, a partial scan, or a depth map, maximizing the range of possible applications.

The system is trained with a large dataset of depth maps generated from the human
bodies of the SCAPE database [2], as well as from clothed subjects of the Yobi3D [1]
and MIT [46] dataset. Note all meshes in the SCAPE database are in full correspon-
dence, while the clothed 3D body models are manually labeled. Similar to the unified
embedding approach of FaceNet [33], the AlexNet [21] classification network can be used
to learn distinctive feature vectors for different subregions of the human body. While
the performance of this dense correspondence computation is comparable to state of the
art techniques between two full models, learning shape priors of clothed subjects can
yield highly accurate matches between partial-to-full and partial-to-partial shapes. The
effectiveness of these correspondences is demonstrated in a template based performance
capture application that uses a single RGB-D camera as input.
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Figure 6: To ensure smooth descriptors, we define a classification problem for multiple
segmentations of the human body. Nearby points on the body are likely to be assigned
the samal label in at least one segmentation.

4.1 Classification Network

We now describe a deep learning framework to compute high-dimensional feature descrip-
tors for classification tasks. Traditional classification neural networks tend to separate
the embedding of surface points lying in different but nearby classes. Thus, using such
learned feature descriptors for correspondence matching between deformed surfaces often
results in significant outliers at the segmentation boundaries. Learning on repeated
mesh segmentations can overcome this issue [48]. As a result, shape points that are
geodesically close on the surface of their corresponding 3D model to nearby points in
the feature space. Further, with this approach outliers are considerably reduced and the
amount of necessary training data is much smaller compared to conventional learning
methods. We can formulate the correspondence problem as a classification problem:
first, a feature descriptor f : I → Rd is learned. This descriptor maps each pixel in
a single depth image I to a feature vector. These feature descriptors are then used to
establish correspondences across depth maps; see Figure 5. The feature vector should
satisfy two properties:

Inter-Subject: f depends only on the pixel’s location on the human body, so that if
two pixels are sampled from the same anatomical location on depth scans of two
different humans, their feature vector should be nearly identical, irrespective of
pose, clothing, body shape, and angle from which the depth image was captured.

Intra-Subject: ‖f(p)−f(q)‖ is small when p and q represent nearby points on the same
human body, and large for distant points.

The literature takes two different approaches to enforcing these properties when learning
descriptors using convolutional neural networks. Direct methods promote these properties
in the loss function (by using e.g. siamese or triplet-loss); however, it is not trivial how
to sample a dense set of training pairs or triplets that can all contribute to training [33].
Indirect methods instead optimize the network architecture to perform classification.
The indirect approach is effective since classification networks tend to assign similar
(dissimilar) descriptors to the input points belonging to the same (different) class, and
thus satisfy the above properties implicitly. The experiments in [48] suggest that an
indirect method that uses an ensemble of classification tasks has better performance and
computational efficiency.
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4.2 Descriptor Learning as Ensemble Classification

There are two challenges to learning a feature descriptor for depth images of human
models with an indirect approach. First, the training data is heterogenous: between
different human models, only sparse set of key point correspondences are available, while
for different poses of the same person, we have dense pixel-wise correspondences [2].
Second, smoothness of descriptors learned through classification is not explicitly enforced.
Even though some classes tend to be closer to each other than the others in reality, the
network treats all classes equally. To address both challenges, per-pixel descriptors can
be learned for depth images by first training a network to solve a group of classification
problems, using a shared feature extraction tower.

Formally, suppose there are M classification problems Ci, 1 ≤ i ≤ M . Denote the
parameters to be learned in classification problem Ci as (wi,w), where wi and w are
the parameters corresponding to the classification layer and descriptor extraction tower,
respectively. The descriptor learning is defined as minimizing a combination of loss
functions of all classification problems:

{w?
i },w? = arg min

{wi},w

M∑
i=1

l(wi,w). (44)

After training, the optimized descriptor extraction tower becomes the output. When
wi,w are given by convolutional neural networks, Eq. 44 can be effectively optimized
using stochastic gradient descent through back-propagation.

Heterogenous Training Datasets To overcome the challenge of heterogenous train-
ing data, two types of classification tasks are included in this ensemble: one for classifying
key points, used for iter-subject training where only sparse ground-truth correspondences
are available, and one for classifying dense pixel-wise labels, e.g., by segmenting models
into patches used for intra-subject training; see Fig. 6. Both contribute to the learning
of the descriptor extraction tower.

Descriptor Smoothness Instead of introducing additional terms in the loss function,
a simple yet effective strategy is to randomize the dense-label generation procedure. As
shown in Figure 6, multiple segmentations of the same person are considered, and a
classification problem for each is introduced. Identical points will always be associated
with the same label and far-apart points will be associated with different labels. Yet for
other points, the number of times that they are associated with the same label is related
to the distance between them. Consequently, the similarity of the feature descriptors
are correlated to the distance between them on the human body resulting in a smooth
embedding satisfying the desired properties discussed earlier.
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4.3 Correspondence Computation

The classification network can be used to extract per-pixel feature descriptors for depth
maps. For full or partial 3D scans, we first render depth maps from multiple viewpoints
and compute a per-vertex feature descriptor by averaging the per-pixel descriptors of
the depth maps. Then, we use these descriptors to establish correspondences simply by
a nearest neighbor search in feature space; see Figure 5. For applications that require
deforming one surface to align with the other, we can use these correspondences into any
non-rigid deformation technique; see Sec. 2. The performance of deep learning-based cor-
respondences on various real and synthetic datasets, naked and clothed subjects, as well
as full and partial matching for challenging examples is illustrated in Figure 4.3. The col-
orizations validate the accuracy, smoothness, and consistency of dense correspondences,
including topological variations between source and target. Correspondences between
front and back views are correctly identified for the full-to-partial matchings; see Real
Capture 1. Popular skeleton tracking methods such as [34, 43] often have difficulties re-
solving this ambiguity. Note that for poses and clothing that are significantly different
than those in the training data, learned correspondences will be erroneous.
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4.4 Application: Performance Capture

The learned correspondences can be used for template-based performance capture using
a depth map sequence captured from a single RGB-D sensor. The complete geometry
and motion is reconstructed in every sequence by deforming a given template model to
match the partial scans at each incoming frame of the performance. Unlike existing meth-
ods [38, 23, 47, 41, 39, 42] which track a template using the previous frame, in order to
avoid potential drifts, the template model is deformed from its canonical rest pose using
the computed full-to-partial correspondences. Even though the correspondences are com-
puted independently in every frame, we observe a temporally consistent matching during
smooth motions without enforcing temporal coherency as with existing performance cap-
ture techniques. Since our deep learning framework does not require source and target
shapes to be close, we can effectively handle large and instantaneous motions. For real
data, we visualize the reconstructed template model at every frame; for synthetic data
we show the error (in cm) to the ground truth.
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5 Conclusion

In this course, we introduced 2D/3D registration algorithms and show their applications
for data captured with RGB-D devices, such as the Microsoft Kinect or the Intel Re-
alSense. Image and geometry registration algorithms are an essential component of many
computer graphics and computer vision systems. With recent technological advances in
RGB-D sensors, robust algorithms that combine 2D image and 3D geometry registration
have become an active area of research. The goal of this course was to introduce the basics
of 2D/3D registration algorithms and to provide theoretical explanations and practical
tools to design robust computer vision and computer graphics systems based on RGBD
devices. We have shown that 2D and 3D registration can be expressed and combined
in a common framework. We also presented a deep learning framework that can infer
accurate dense correspondences between partial shapes of objects with extremely large
intra-class shape variations or deformations. Numerous application based on RGB-D
devices can benefit from this formulation that allows to combine different priors in an
easy manner. To illustrate the theory and demonstrate practical relevance, we briefly dis-
cuss three applications: rigid scanning, non-rigid modeling, realtime face tracking, and
human performance capture.
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