
Supplemental Materials: Efficient Multispectral Facial Capture
With Monochrome Cameras

Chloe LeGendre
USC Institute for Creative

Technologies

Kalle Bladin
USC Institute for Creative

Technologies

Bipin Kishore
USC Institute for Creative

Technologies

Xinglei Ren
USC Institute for Creative

Technologies

Xueming Yu
Google

Paul Debevec
USC Institute for Creative

Technologies

ACM Reference format:
Chloe LeGendre, Kalle Bladin, Bipin Kishore, Xinglei Ren, Xueming Yu,
and Paul Debevec. 2018. Supplemental Materials: Efficient Multispectral
Facial Capture With Monochrome Cameras. In Proceedings of SIGGRAPH
’18 Posters, Vancouver, BC, Canada, August 12-16, 2018, 6 pages.
https://doi.org/10.1145/3230744.3230778

1 METHOD: MULTISPECTRAL
POLARIZATION PROMOTION

We develop a technique that we call multispectral polarization pro-
motion in which we hallucinate cross-polarized images for each
spectral channel from unpolarized lighting images, so that we can
generate a multispectral diffuse albedo texture map of the subject.
Our process requires that only one of the spectral channels in the
lighting rig is polarized in the pattern of Ghosh et al. [2011].

For clarity, we extend the variable naming conventions of Ma et
al. [2007]. We define a gradient illumination image of the subject
Ll,i,s , where l describes the gradient condition, i describes the
polarization state (one of cross or parallel), and s defines the index
of spectrum of illumination, ranging from 0 to n − 1 where n is the
number of spectral channels in the lighting rig, and 0 represents
the white LED. The gradient illumination images required [Ma et al.
2007] are therefore:

• Lx,c,0, cross-polarized, x gradient
• Ly,c,0, cross-polarized, y gradient
• Lz,c,0, cross-polarized, z gradient
• Lf ,c,0, cross-polarized, full sphere
• Lx,p,0, parallel-polarized, x gradient
• Ly,p,0, parallel-polarized, y gradient
• Lz,p,0, parallel-polarized, z gradient
• Lf ,p,0, parallel-polarized, full sphere

When linear polarizers over the light sources are oriented per-
pendicularly to the those in front of the camera, the polarizer will
block all of the specularly-reflected light and about half of the
diffusely reflected light, such that Ll,i=c,s = 1

2Dl,s , representing
an image of the diffuse or sub-surface scattered reflections. When
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the polarizer in front of the camera is parallel, the polarizer will
block about half of the diffusely reflected light, and none of the
specularly-reflected, such that Ll,i=p,s = 1

2Dl,s + Sl,s . Therefore,
for each gradient lighting condition l and spectrum s , the specular
reflection image Sl,s is produced via polarization differencing:

Sl,s = Ll,p,s − Ll,c,s (1)

Using a monochrome spectral camera model, a pixel value ps, j
of a material j lit by spectrum s is produced by integrating a fully-
spectral modulation of the scene illuminant Is (λ) by the reflectance
spectrum of the material Rj (λ) and the monochrome camera’s spec-
tral sensitivity function C(λ):

ps, j =

∫ 700

400
Is (λ)Rj (λ)C(λ) (2)

We again assume that light reflected specularly from the skin
preserves both the polarization and spectrum of the incident source.
This assumption implies for an image pixel representing specular
reflection that the reflectance spectrum Rj (λ) of Eq. 2 is a constant
value over the visible wavelength range. This value represents
the per-pixel reflectivity or specular albedo (ρspec ) of the surface,
modulated by a per-pixel constant scale factor Fl that only depends
on the geometry of the illumination relative to the geometry of
the surface. The intuition behind the constant Fl is that a different
amount of light will be reflected specularly towards the camera for
a pixel depending on the incident illumination condition l and the
pixel’s surface normal. Both constants can be pulled out from the
integral, and the pixel values of the specular reflection image Sl,s
are computed as:

Sl,s = (ρspecFl )

∫ 700

400
Is (λ)C(λ) (3)

In Eq. 3, the integral represents the intensity of Is (λ) as observed
by the monochrome camera with spectral response C(λ). We call
this quantityWs :

Ws =

∫ 700

400
Is (λ)C(λ) (4)

Ws can be directly measured as a calibration step by photograph-
ing a reflective white spectralon disk or the white square of a color
chart as lit by each spectrum of illumination s (scaled up to repre-
sent the true reflectance of these calibration targets). No spectral
measurements are required. By substitution, we can write that the
specular reflection image Sl,s is a scaled multiple of the incident
light intensity, depending on the per-pixel specular albedo and
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per-pixel geometric factor: Sl,s = (ρspecFl )Ws . Or, by rearranging:

(ρspecFl ) =
Sl,s
Ws

(5)

We can equate these ratios across spectral channels for a given
gradient illumination condition l . Without loss of generality, we
can compare the white LED with another spectrum s:

Sl,0
W0
=

Sl,s
Ws

(6)

We assume that with our lighting rig we are able to capture
cross- and parallel-polarized images Lf ,c,0 and Lf ,p,0 for the white
LED for the full sphere lighting condition f , producing Sf ,0 using
Eq. 1. After measuringWs for each spectral channel, we therefore
solve for Sf ,s for each spectral channel, by substitution into Eq.
6. The intuition behind this step is again that the amount of light
reflected specularly does not depend on the incident spectrum, but
rather depends only on the relative intensity of the different spectral
channels as observed by the camera.

However, the specular reflection images Sf ,s are not sufficient.
For the texture maps cross-polarized images Lf ,c,s are required
for each spectral channel (or, equivalently, Df ,s ). So, using the
unpolarized multispectral LEDs of the lighting rig, we capture the
unpolarized (“mixed polarization") imageMf ,s for each spectrum s .
An unpolarized lighting imageMl,s for lighting condition l can be
approximated as the sum of cross- and parallel-polarized images:

Ml,s = Ll,p,s + Ll,c,s (7)

Or equivalently, by substitution:

Ml,s = Dl,s + Sl,s (8)

Since we capture imagesMf ,s and estimate Sf ,s for each spectral
channel, we can compute Df ,s or equivalently Lf ,c,s . The multi-
spectral set of hallucinated images Df ,s provide the diffuse albedo
maps required for rendering, after RGB images are formed via color
channel mixing. For n added spectra, we have only added n unpo-
larized multispectral images to the scan process.

With polarization promotion, we have effectively hallucinated
cross- and parallel-polarized images for all spectral channels using
only the polarized lighting conditions of one spectral channel and
the corresponding unpolarized lighting conditions of the others.
Theoretically the polarized spectral channel could be any – polariz-
ing the white LED channel is not a requirement of our approach.
However, since the index of refraction has some slight wavelength
dependence, comparing specular images under the broad-spectrum
white LED with those of the other spectra is advisable to minimize
errors caused by the assumption of spectrum-preserving reflections.

2 METHOD: MULTISPECTRAL OPTICAL
FLOW

Our optical flow approach is specifically designed to handle incident
illumination conditions with similar geometric configurations but
different incident spectra.

Formally, our optical flow approach must align Lf ,m,s=1..n to
Lf ,m,0, wherem indicates the mixed polarization condition. Below,
we discuss the special case of adding spectral channels comprised
of the red, green, and blue LEDs (spectra in Fig. 1).

Figure 1: The spectra of the four LEDs comprising the Light
Stage used in this work.

The appearance of skin illuminated by red, green, and blue light is
different owing to the wavelength-dependent effects of sub-surface
scattering [Ghosh et al. 2008; Jensen et al. 2001]. When skin is il-
luminated by a broad-spectrum light source, shallow sub-surface
scattered light appears blueish in color, while deeper scattered light
appears reddish in color from this wavelength-dependent scattering
and light absorption by the skin’s chromophores. For the narrow-
band LED illumination, the image under the red LED exhibits less
distinct skin texture and a more diffused, soft appearance, in con-
trast with the image under the blue LED with a great deal of high
frequency detail, predominantly from short-wavelength light ab-
sorption by epidermal melanin. The image under the green LED is
similar to blue, but slightly “softer" (see Fig. 2).

White Red

Green Blue

Figure 2: Inset of facial detail photographed by monochrome cam-
era under different incident illumination spectra, with spectra in
Fig. 1. Images have been scaled to the same relative brightness for
display.
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(a) |x1R −W | (b) |x2G −W | (c) |x3B −W |

(d) |x4R + x5B −W | (e) |x6R + x7G + x8B −W |

Figure 3:Absolute difference e in pixel valueswhen approximating
the image for white LED, using the red channel er = 0.00971, the
green channel eд = 0.00816, the blue channel eb = 0.01136, the red
and blue channel erb = 0.00684, and the red, green, and blue channel
erдb = 0.00561 respectively.

To flow from an image of a subject illuminated by one spectrum
to that of a different spectrum, we can naively assume that these
images are the same, modulated only by an overall average scale
factor xs that accounts for the differing fully-spectral modulation of
the subject’s average spectral reflectance by the differing incident
LED spectra s and the monochrome camera’s spectral sensitivity.
Formally, the assumption is that we can compute xs such that
Lf ,m,s=0 ≈ xsLf ,m,s for s = 1..n, approximately satisfying the
brightness constancy constraint, so that xsLf ,m,s may be flowed
to Lf ,m,s=0. This naive assumption ignores spatially-varying skin
spectral reflectance and the effects of sub-surface scattering.

Wilson et al. [2010] defined an iterative optical flow solution to
align a pair of complementary images that when added together pro-
duced a third target image. The method flowed cross- and parallel-
polarized images to mixed polarization images, and flowed spheri-
cal gradients and their inverse counterparts towards a full-on even
sphere of illumination. We extend the complementary flow of Wil-
son et al. to the multispectral domain, increasing the accuracy of
the brightness constancy assumption by combining images across
spectral channels. Our key observation is that some linear combi-
nation of aligned multispectral images will more closely match the
target image, Lf ,m,s=0, as compared with each aligned image alone.
Fig. 3 demonstrates this effect, where the absolute value of the pixel
error is lowest for the linear combination of red, green, and blue
images when trying to match the intensity of the white image.

Inspired by the metameric reflectance matching equation of Le-
Gendre et al. [2016], in which a target illuminant’s color rendition
is matched in a least squares sense by summing the pixel values of
color chart squares as illuminated by different LEDs of distinct spec-
tra, we define a least squares procedure to incrementally align spec-
tral channels. We rearrange the pixel values of our monochrome
target image P0 into one column vector ®P0. Say we have two col-
umn vectors representing pixel values from images Q0 and Q1 of
different spectral channels to be aligned, ®Q0 and ®Q1. Then we can
find values x0,x1 that satisfy ®Q0x0 + ®Q1x1 = ®P0 in a least squares
sense. We can then employ complementary flow to align Q0x0 and
Q1x1, which sum to P0. In the next iteration, we assume that these
two images are correctly aligned, renaming the stacked pixels from
the flowed images as ®N0 and ®N1, so we can use them to improve
alignment for the next spectral channels. We select new images Q0
and Q1 from the set of images not yet aligned, and we compute a
least squares solution such that ®Q0x0 + ®Q1x1 + ®N0x2 + ®N1x3 = ®P0.
Then we can use complementary flow with Q0x0 and Q1x1, which
sum to P0 − N0x2 − N1x3, where N0 and N1 are already aligned to
P0. Beyond bootstrapping with an initial target, the algorithm (1)
requires no other heuristic. The order of spectral channel alignment
is determined automatically, by selecting the next two images that
when linearly combined produce the least error as compared with
a linear combination of the already aligned images, or in the first
iteration, P0. In algorithm 1, we defineN as a growing matrix whose
columns represent the pixel values of already aligned images that
are not ®P0. At each step we minimize the term in expression 9:

| | [ ®Q0 | ®Q1 |N]x − ®P0 | |2 (9)

The column vectors of Eq. 9 can be linearly independent samples
from a color chart lit by each incident spectrum, or pixel values
sampled from the actual images after they have been low pass fil-
tered to account for motion since they all have not yet been aligned.
Algorithm 1 defines the procedure to apply complementary flow
across different illumination spectra. We initialize P0 as Lf ,m,s=0
such that the multispectral images align to the spherical gradient
images which were captured using the spectrum s = 0.

3 RESULTS AND FIGURES
We show sample images from a monochrome camera facial scan
using four spectral channels: red, green, blue and broad-spectrum
white (spectra in Fig. 1). Our lighting rig only includes polarizing
filters for the white LEDs, so we employ our polarization promotion
technique and multispectral optical flow. In Fig. 5, we show input
monochrome images and the full-color cross- and parallel-polarized
images that can be produced in our pipeline. In Fig. 6 we show a
side-by-side comparison of a flash-lit photograph of the subject
acquired with a Canon 1DX DSLR camera with a rendering of the
subject produced using our monochrome imaging pipeline. For the
facial scan, we used 14monochrome Ximeamachine vision cameras,
each fitted with a 50mm Fujinon lens and linear polarizer. For the
rendering, we used a custom alSurface skin shader and the Arnold
global illumination ray-tracer. We tried to match the camera and
lighting positions, although in this case the flash-lit photograph
of the subject was acquired many days apart from her facial scan.
Nonetheless, the subject’s likeness has clearly been captured, and
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Data:
One target image P0, pixels stacked into column ®P0;
n − 1 unaligned images P1...n , pixels stacked as ®P1...n ;

Result:
n aligned images P0...n;

Procedure:
Let N = [];
LetU represent the set of unaligned images;
Add P1...n toU ; Let k represent the size ofU ;

while k > 0 do
if k > 1 then

Minimize expression 9, solving for x for all possible
combinations of ®Q0 and ®Q1 inU ;
Select Q0 and Q1 with minimal error;
Complimentary flow Q0x0 and Q1x1 to the image
formed by unstacking ®P0 − Nx2..n;
Let Q0,a and Q1,a represented the aligned images Q0
and Q1;

Append ®Q0,a and ®Q1,a as columns to N;
Remove images Q0 and Q1 fromU ;

else
Let Q0 = last singleton image inU ; Let ®Q1 = 0;
Minimize expression 9 solving for x;
Flow Q0x0 to unstacked P0 − Nx2..n;
Remove image Q0 fromU ;

end
end

Algorithm1:Multispectral Optical Flow. Alignn images captured
at different time instances and with different spectra.

high resolution facial details are produced along with the color
texture map required for rendering. We rendered the subject in Fig.
6 with added skin microgeometry [Graham et al. 2013] to better
match the appearance of specular reflections. In Fig. 4, we show a
region of the subject’s cheek for the single-channel diffuse normal,
specular normal, and diffuse albedo texture maps generated from
the scan images of Fig. 5. Although our technique produces only
a single-channel diffuse normal, the smoother appearance of the
diffuse normal map is observed compared with the specular normal
map as expected.

diffuse normals specular normals diffuse albedo

Figure 4: Left: Diffuse normal map for a crop of the cheek region.
Center: Specular normal map for the same region. Right: Corre-
sponding diffuse albedo texture map. Each were generated using
ourmonochrome facial scanning pipeline withmultispectral polar-
ization promotion.
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l monochrome Ll,p,s=0 monochrome Ll,c,s=0 monochrome Sl,s=0 color Ll,p color Ll,c

Figure 5: From left to right: lighting conditions l , monochrome parallel-polarized images,monochrome cross-polarized images,monochrome
polarization difference images, colorized hallucinated parallel-polarized images, and colorized hallucinated cross-polarized images, for a
female subject.
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photograph of flash-lit subject rendering with diffuse texture rendering without diffuse texture

Figure 6: Left: Color photograph of a female subject under a flash-lit condition. Center: Rendering of the same female subject from the
monochrome scan, photographs in Fig. 5. Note that the scan of the subject and her photograph were completed several days apart, with
different cameras. Right: Rendering to show captured geometry without color detail.
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