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Figure 1: (a) Renderings of reconstructed facial geometry and hair particles with texture (top) and false color illustrating hair orientation
(bottom). (b-d) Gray renderings of three different subjects with recovered facial geometry and hair particles.

Abstract

We propose an extension to multi-view face capture that recon-
structs high quality facial hair automatically. Multi-view stereo is
well known for producing high quality smooth surfaces and meshes,
but fails on fine structure such as hair. We exploit this failure, and
automatically detect the hairs on a face by careful analysis of the
pixel reconstruction error of the multi-view stereo result. Central
to our work is a novel stereo matching cost function, which we call
equalized cross correlation, that properly accounts for both cam-
era sensor noise and pixel sampling variance. In contrast to pre-
vious works that treat hair modeling as a synthesis problem based
on image cues, we reconstruct facial hair to explain the same high-
resolution input photographs used for face reconstruction, produc-
ing a result with higher fidelity to the input photographs.

1 Introduction

Modeling human hair from photographs is a topic of ongoing inter-
est to the graphics community. Yet, the literature is predominantly
concerned with the hair volume on the scalp, and it remains dif-
ficult to capture digital characters with interesting facial hair. Re-
cent stereo-vision-based facial capture systems (e.g. [Furukawa and
Ponce 2010][Beeler et al. 2010]) are capable of capturing fine skin
detail from high resolution photographs, but any facial hair present
on the subject is reconstructed as a blobby mass. To create convinc-
ing digital characters, an artist typically has to remove the offending
geometry, and re-model the hair using artistic tools. Our primary
goal in this work is to automate the creation of facial hair for a
face captured using multi-view stereo, with high fidelity to the in-
put photographs. Prior work in facial hair photo-modeling is based
on learned priors and image cues (e.g. [Herrera et al. 2010]), and
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does not reconstruct the individual hairs belonging uniquely to the
subject. We propose a method for capturing the three dimensional
shape of complex, multi-colored facial hair from a small number
of photographs taken simultaneously under uniform illumination.
This includes the hairs that make up the eyebrows, eyelashes, and
any other relatively trim facial hair present.

We analyze the pixel reconstruction errors in multi-view stereo, and
observe that errors are high on pixels where the subject is not well
represented by a smooth mesh, most notably around the hairs on
the face. This arises from the typical assumption in multi-view
stereo, that the face may be reconstructed as a smooth polygonal
mesh with a texture map. We also note that the resolution obtained
using readily available camera equipment is capable of imaging in-
dividual facial hairs. This motivates our approach, which is to re-
construct hairs that explain the pixels that could not be explained
using a smooth mesh. We also re-texture the parts of the mesh that
lie beneath the hair, obtaining a more complete model of the hu-
man face including facial hair that results in a lower overall pixel
reconstruction error.

Besides hair detection and reconstruction, we derive a novel stereo
matching cost function, which we call equalized cross correlation
(Section 4.1). It is related to normalized cross correlation but ac-
counts for camera sensor noise and pixel sampling variance. This
allows us to discriminate between reconstruction error caused by vi-
olation of the smooth mesh assumption versus that caused by noise.

2 Related Work

Several works address the issue of hair generation in some form or
another based on photographs. Most of these are concerned with
modeling the hair volume on the head. Wei et al. [Wei et al. 2005]
compute 2D hair orientation fields, and grow 3D fibers that follow



Figure 2: The arrangement of photographs used in our method
is typical of multi-view stereo face capture. Our examples use six
photographs under uniform illumination, such as those shown here.

the fields using orientation triangulation. Paris et al. [Paris et al. ]
use many photos and synthesize long hair on the head, also by trac-
ing particles along orientation fields. Luo et al. [Luo et al. 2011]
consider a hair volume in motion. While these are similar in some
ways to our work, we locate and reconstruct individual hairs, in-
stead of using cues such as gross hair orientation. In that sense the
work of Jakob et al. [Jakob et al. 2009] is more similar to ours,
but uses a focus sweep scheme to capture a hair assembly instead
of multi-view stereo. Others address facial hair specifically. Her-
rera et al. [Herrera et al. 2010] model facial hair based on statis-
tical analysis of photographs, not directly reconstructing the indi-
vidual hairs of the subject. These related works inspire our method
in several respects. Contemporary with this work is the method
of [Beeler et al. 2012], which produces high quality facial hair
using passive multi-view stereo and has the advantage of produc-
ing connected piecewise linear hair primitives instead of particles.
However, the method relies on additional close-up photographs of
the facial hair regions, and requires significant post-processing and
smoothing steps to produce plausible hairs.

3 Overview of Method

We base our method on multi-view passive stereo reconstruction
using high-resolution photographs. In our examples, we use six
photographs at 2600×3908 pixels captured simultaneously from
six digital SLR cameras surrounding the face. The face is illumi-
nated by a uniform field of white LED light, though any relatively
uniform illumination could be used. Optionally, specular reflection
may be canceled by the use of polarization filters on the lights and
cameras, as in [Ghosh et al. 2011]. Such photographs are typical
of passive stereo facial capture, requiring no special setup for hair
(see Figure 2). We aim to explain the set of input photographs us-
ing a textured face mesh and facial hair particle primitives. We first
discuss facial geometry reconstruction, followed by facial hair de-
tection and removal, and finally facial hair reconstruction.

(a) (b)

Figure 3: (a) An example base mesh, obtained using the method of
[Furukawa and Ponce 2010]. (b) Our initial refined mesh obtained
with the method in Section 4.

4 Facial Geometry Reconstruction

Reconstruction begins with the method of [Furukawa and Ponce
2010], up to the point of Poisson meshing [Kazhdan et al. 2006]
to construct a low-resolution base mesh of the face. Our method
differs in the way the mesh is further refined. We smooth the base
mesh and parameterize it into a UV texture coordinate space de-
fined by an artist (although many works exist on automatic mesh
parameterization). All further processing occurs in the UV space.
Our refinement scheme solves for a displacement map in the UV
space which displaces the base mesh vertices along their normals.
In some ways this is similar to the mesh refinement in [Furukawa
and Ponce 2010] or [Beeler et al. 2010], however we perform the
refinement using a multi-view stereo reconstruction algorithm that
is not restricted to the local minimum surrounding the base mesh.
Consequently, the base mesh may be of relatively low resolution.
(Figure 3 shows an example base mesh and refined mesh used in
our work.) In all computations, we ignore any unused pixels in the
UV space. We express the refinement problem as the minimization
of the following pairwise energy function defined on a graph coin-
cident with the UV texture grid, with V representing vertices, and
edges E between all horizontal and vertical neighbors, which we
solve using the TRW-SAD algorithm [Ghosh et al. 2011]:

E(X) =
∑
s∈V

Ds(xs) +
∑

(s,t)∈E

Sst(xs, xt) (1)

Here, Ds is a data term and Sst is a smoothing term. The data term
is as follows:

Ds(xs) =

∑
(i,j)∈stereocams

wiswjsCij(poss(xs))∑
(i,j)∈stereocams

wiswjs
(2)

where wis is the dot product of the view vector and the surface
normal of the base mesh at site s. The smoothing term is:

Sst(xs, xt) = λsmooth
((poss(xs)− post(xt)) · nst)2

|poss(xs)− post(xt)|
2 (3)

where poss is 3D position given a displacement, stereocams is the
set of neighboring camera pairs in which poss(xs) is visible (visi-
bility information is updated after every iteration of the algorithm),
C is the matching cost function, nst is the estimated surface normal



between sites s and t, and λsmooth is the smoothing term weight.
(λsmooth = 1 in all figures in this work.) The matching cost func-
tion is evaluated over a 5 × 5 pixel grid set tangent to the surface
and centered at the 3D point under consideration. The grid spac-
ing is scaled in both dimensions to be as close as possible to the
pixel spacing in the two images being compared. This construction
avoids any dependence on the UV parameterization of the mesh,
and hence the matching is unaffected by any unevenness in the pa-
rameterization. The matching cost function is similar to normal-
ized cross correlation (NCC), but modified to take into account the
noise in the image signal, as detailed in Section 4.1. We discuss the
choice of nst in Section 4.2.

4.1 Equalized Cross Correlation (ECC)

Typical stereo matching cost functions make use of normalized
cross correlation (NCC) over a small patch of pixels as a measure
of pixel similarity. NCC is advantageous as it is invariant to scaling
or offsetting the pixel values. However, NCC has the disadvantage
that it makes no consideration of the noise present in the image
signals. If a patch of pixels has low contrast, then after normaliza-
tion the patch will be dominated by noise. Such noisy patches may
cause spurious stereo matches, which may frustrate good matches
in neighboring high-contrast patches. To remedy this shortcoming,
we modify NCC to account for noise in the image. We call this
equalized cross correlation (ECC). The derivation of ECC follows.
We model the values in n×n-pixel image patches I (and J like-
wise) as drawn from a normal distribution (for pixel coordinate p)
based on some unknown idealized image patch µ:

Ip ∼ N (Ī + Ĭµp, σ2
Ip + τ2I), (4)

where Ī and Ĭ define a linear transform on the idealized patch,
σ2
Ip models pixel noise and τ2I models the variance due to pixel

sampling of the idealized patch. Following [Healey and Kondepudy
1994], we empirically fit a pixel noise model to our cameras:

σ2
Ip = aµIp + b ≈ aIp + b, (5)

with a = 0.01, b = 0.001 for the red channel, a = 0.008, b =
0.001 for green and a = 0.01, b = 0.001 for blue, and µIp is
the (unknown) mean of the Normal distribution N (µIp, σIp) rep-
resenting the pixel noise model. We assume a camera sensor with
linear radiometric response. Nonlinear pixel data would have to be
linearized before proceeding. Assuming the idealized patch µ has
zero mean and unit variance, we estimate:

Ī ≈ 1
n2

∑
p

Ip, Ĭ ≈
√

1
n2

∑
p

(Ip − Ī)2, (6)

and we approximate the pixel sampling variance τ2I ≈ 1
4
Ĭ2, which

is a heuristic estimate equal to the variance introduced if the pixels
were resampled using bilinear interpolation with random sub-pixel
offsets. Next we define the normalized patch Î, similar to NCC:

Îp = Ĭ−1(Ip − Ī) ∼ N (µp, Ĭ−2(σ2
Ip + τ2I)). (7)

The matching cost L is simply the negative log likelihood of Î−Ĵ :

L = 1
n2

∑
p

(Îp − Ĵp)2

2(Ĭ−2(σ2
Ip + τ2I) + J̆−2(σ2

Jp + τ2J ))
. (8)

The 1
n2 term averages out the matching cost over the patch, which is

necessary to avoid over-counting when the costs of all the patches
are summed together in (1). (Each patch is also over- or under-
counted by some factor due to summing over vertices instead of

(a) (b)

Figure 4: Recovered facial geometry of the subject in Figure 2.
(a) Using NCC photometric cost. (b) Using ECC photometric cost.
Note how the NCC result exhibits uniform smoothing over the en-
tire face, whereas the ECC result exhibits spatially varying smooth-
ness correlated to the actual smoothness of the subject.

pixels, however the same factor applies to the smoothing term and
hence the terms balance.) For exposition, we define the equalized
patch Ĩ (and J̃ similarly), also expanding and simplifying on τ :

Ĩp =
Îp√

2n2(Ĭ−2σ2
Ip + J̆−2σ2

Jp + 1
2
)
, (9)

which leads to the simplified expression for ECC:

L =
∑
p

(Ĩp − J̃p)2. (10)

It is critical to note here that the sum of squared differences over
equalized patches, as shown above, properly models the error in the
reconstruction of the input images. However, we may not use it
directly in our energy formulation, since low-contrast patches will
unfairly dominate high-contrast patches. Instead we must normal-
ize the cost function based on the patch norms:

L

|Ĩ|
2

+ |J̃ |
2 = 1−

2
∑
p ĨpJ̃p

|Ĩ|
2

+ |J̃ |
2 . (11)

Indeed, if σIp, σJp are zero, then the above reduces to NCC. Un-
fortunately by restoring fairness in the energy formulation, we lose
the equivalence to reconstruction error. To mitigate this effect, we
weight the cost function by the denominator from the previous iter-
ation’s solution, yielding the revised ECC function:

C = L× (|Ĩ|
2

+ |J̃ |
2
)previous

|Ĩ|
2

+ |J̃ |
2 . (12)

So far we have assumed the image patches have only a single chan-
nel of data. For color images, we may combine the costs as follows:

Crgb =

∑
c∈{r,g,b} Lc

3
×

(∑
c∈{r,g,b} |Ĩc|

2
+ |J̃c|

2
)
previous∑

c∈{r,g,b} |Ĩc|
2

+ |J̃c|
2 .

(13)
The division by 3 follows from the assumption that the color chan-
nels are highly correlated within a patch. Figure 4 compares geom-
etry recovered using the NCC photoconsistency cost to that using
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Figure 5: Optimized photoconsistency cost of the subject in Figure
2. (a) Using NCC. (b) Using ECC. Note how the higher cost regions
in ECC correspond to non-smooth regions of the face, particularly
hair, and smooth regions of the face have relatively uniform cost.
NCC is often confused by texture detail, such as skin pores and
eyelid creases, as pixel sampling variance is not taken into account.

the ECC photoconsistency cost. The ECC result exhibits sharper
features without relying on any spatially varying smoothing term
heuristics. Figure 5 visualizes the optimized NCC cost versus ECC.
ECC accounts for pixel noise and sampling variance, leaving only
the cost associated with violations of the smooth mesh assumption.

4.2 Smoothing Term

For a suitably smooth base mesh that’s not too far from the real
mesh, setting nst equal to the surface normal of the base mesh is
not a bad choice. This favors surfaces with a similar surface normal
as the smooth base mesh, and is used for all the figures in this work.
We also experimented with an approximation to the second-order
prior in [Woodford et al. 2009], by locally fitting a plane to the
previous iteration’s displacement map in the neighborhood around
the sites s and t, then setting nst to the normal of the plane, but
we found no clear advantage to this method over the base mesh
prior. If photometric surface normals are available, then nst may
be chosen based on the photometric surface normals, as in [Ghosh
et al. 2011]. Alternatively, nst may be chosen as a function of the
gradient of texture intensity, as in [Beeler et al. 2010].

4.3 Multi-View Texture Blending

We reconstruct a color texture map of the face in the same UV space
used for the parameterization of the mesh. Hence, each mesh vertex
corresponds to exactly one pixel in the texture map. We reconstruct
the color of a vertex by projecting its 3D position onto all of the
cameras, and blending the pixel values from the input images. We
omit views in which the vertex is not visible. Since the pixel inten-
sities in the different cameras may not match exactly and we wish
to avoid seams in the reconstructed texture, we formulate a linear
least squares problem over all vertices in terms of not only their ab-
solute texture values, but also their texture gradients. For a given
vertex s, the absolute texture value estimate Ts is:

Ts =

∑
i∈cams

w2
isσ
−2
Is Is∑

i∈cams
w2
isσ
−2
Is

, (14)

where Is is the pixel value in view i at the projected position of
poss(xs).The texture gradient estimate Gst between s and t is:

Gst =

∑
i∈camst

wiswit(σ
2
Is + σ2

It)
−1(It − Is)

ωprior +
∑
i∈camst

wiswit(σ2
Is + σ2

It)
−1

(15)

Figure 6: Using consumer digital SLR cameras to photograph a
face, a single facial hair is typically two to four pixels wide.

where camst = cams ∩ camt, and ωprior = 0.01 serves to smooth
out regions with no information. We then formulate the sparse lin-
ear least squares problem:

E(T) =
∑
s∈V

(ts − Ts)
2 + λG

∑
(s,t)∈E

(tt − ts − Gst)
2 (16)

where ts is the texture value at site s, and λG is a user-supplied
weight parameter that controls the smoothness of the texture blend-
ing between cameras. All of the results in this work use λG = 10.
We minimize (16) using the TRW-S algorithm [Kolmogorov 2006]
with Gaussian (quadratic) closed-form message passing, which acts
as a robust sparse linear least squares solver. Figure 9(a) shows a
result of the texture blending.

5 Facial Hair Detection and Removal

The reconstructed facial geometry and texture from Section 4 con-
tains a poor representation of facial hair, which must be removed
before synthesizing hair particles. We detect which mesh vertices
correspond to hair using a combination of the ECC photoconsis-
tency cost in UV space, and more traditional orientation filters in
image space. These two hair indicators and the hair removal method
are described in the sections following.

5.1 Photoconsistency Hair Indicator

We claim that our ECC matching cost (in Section 4.1) accurately
models the pixel reconstruction error not associated with pixel noise
or pixel sampling variance, and is therefore due to the subject being
poorly represented by a smooth mesh. On a human face, this indi-
cates where the hair is, since hair is not a smooth surface. We may
therefore compute a binary hair indicator value αD for each pixel
site s in UV space (Figure 9(b)), by comparing the value of the data
term (2) to a threshold Dthresh (where Dthresh = 1

2
in this work):

αDs =

(
Ds(xs)

Dthresh
> 1

)
. (17)

5.2 Orientation Filter Hair Indicator

Having photographed the subject at a resolution of 2600 × 3908
pixels, the individual facial hairs in the photographs are typically
between two and four pixels wide (see Figure 6), and can be de-
tected as line segments. We detect lines and their orientations us-
ing the 9-tap G2, H2 separable steerable filter quadrature pair from
[Freeman and Adelson 1991], which suits the hair width in our pho-
tographs. We divide the detected orientation strength by its standard
deviation as predicted by the camera noise model, to normalize it



Figure 7: Orientation strength detected in the six input pho-
tographs, normalized with respect to surface albedo.

with respect to surface albedo. Figure 7 visualizes the orientation
strength for the subject in Figure 2. We next determine which pixels
contain a local maximum orientation strength, indicating a detected
feature. Figure 8 illustrates the process on a patch of facial hair. We
use quadratic interpolation to locate the local maximum in either
the vertical or horizontal 3-neighborhood centered at each pixel,
whichever is most perpendicular to the detected orientation. Unlike
previous work, we locate the maxima of both the total orientation
strength |Gθ2|

2
+ |Hθ

2 |
2

and also of the line detector strength |Gθ2|
2
.

Instead of testing the G2, H2 phase to determine whether a feature
is a line or an edge, we test if the local maximum of the line de-
tector strength is greater than half the local maximum of the total
orientation strength, i.e. d|Gθ2|

2e > 1
2
d|Gθ2|

2
+ |Hθ

2 |
2e, indicating

a line feature. This greatly improves the localization of line fea-
tures, which we have found may differ from the local maximum of
the total orientation strength by more than one pixel. For later use
during hair reconstruction, we store a 2D oriented line segment (at
most one per pixel in each camera view) if the local maximum line
detector strength is above a threshold valueGthresh. (Gthresh = 50
in this work.) We finally compute the hair indicator function αG:

αGs =

(
1

|cams|
∑

i∈cams

Fpi
|Gθ2|

2

pi

Gthresh
> 1

)
, (18)

where pi is the projection of poss(xs) onto camera i, and Fp = 1
if a line feature is detected within the bounds of a pixel p (0 other-
wise). Figure 9(c) visualizes this hair indicator function.

5.3 Combined Hair Indicator

The indicator functionsαD andαG contain noise consisting of false
positives and false negatives. Helpfully, the noise differs between
the two indicator functions, as they are constructed from different
sources of information. Thus, we may construct an improved hair
indicator function α by blending the two indicator functions:

αs =

(
Ds(xs)

Dthresh
+

1

|cams|
∑

i∈cams

Fpi
|Gθ2|

2

pi

Gthresh
> 2

)
. (19)

(a) (b)

(c) (d)

Figure 8: (a) Photograph cropped to show facial hair detail. Note
that some hairs are lighter than the surrounding skin, while others
are darker. (b) Detected orientation strength. (c) Detected orienta-
tion, rendered as hue. (d) Extracted oriented line segments, shaded
according to strength of G2 response.

Figure 9 compares αD , αG and α. Finally, we dilate the true val-
ues in the hair indicator map by one pixel to avoid classifying the
fringes of hairs as skin. Guided by the hair indicator map, we hole-
fill the non-skin regions of the texture map to produce a skin map
using a simple smoothness assumption, again using Gaussian TRW-
S message passing to efficiently solve the hole-filling problem. Our
goal is to produce a texture map with the facial hair removed, to
provide a plausible skin texture to underly the facial hair that we re-
construct later. Additionally, we smooth the skin geometry in these
regions to reduce skin bumpiness beneath the hair. Figure 10 shows
the result of hair geometry smoothing and hair texture removal.

6 Facial Hair Reconstruction

We reconstruct facial hairs as a set of 3D oriented hair particles. We
first correct any view-dependent color variation in the input images
using the face geometry and texture computed in Section 5.3. We
then construct (up to) one 3D oriented hair particle for every 2D
line segment detected in the input images in Section 5, determining
its most likely 3D position by examining the 2D line segments in
other views. The steps are described in the following.

6.1 Correcting View Dependence

The input photographs of the face exhibit some view-dependent ef-
fects due to skin reflectance and variation in the cameras. These
variations would frustrate our subsequent hair reconstruction ef-
forts, so we correct the skin tones of each input photograph in turn
to match the blended texture result using the following scheme.
First, we compute the RGB ratio at each pixel in UV space be-
tween the blended texture and the color contributed by the input
photograph. Ratios computed for occluded pixels and pixels with
hair are unreliable, so we ignore the values for any occluded pixel,
and any pixel that is not skin according to the skin indicator map
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Figure 9: (a) Multi-View blended texture in UV space. (b) Hair
indicator map αD estimated from data term. (c) Hair indicator map
αG estimated from orientation strength. (d) Hair indicator map α
combining data term with orientation strength.

(a) (b) (c)

Figure 10: (a) Initial facial geometry. (b) Geometry with smoothed
hair regions. (c) Geometry from (b) with texture after hair removal.

computed in Section 5.3. The ignored pixels are filled and the en-
tire map is slightly blurred using (again) Gaussian TRW-S message
passing, yielding a smooth, complete ratio map in UV space. The
ratio map is then mapped onto the geometry and rasterized into the
camera view over a white (1, 1, 1) background. We soften the ras-
terized ratio image using a 2-pixel gaussian blur to eliminate any
hard edges, and finally we multiply the input photograph by the ra-
tio image to obtain an image that is nearly free of view-dependent
color variation. Figure 11 illustrates this process.

6.2 Particle Triangulation

Any 2D line segment detected in the input images (in Section 5.2)
is presumably the projection of some 3D line segment onto the im-
age plane. Therefore, for each 2D line segment li in any view vi,
we search for the most likely 3D line segment that could have pro-
duced it (rejecting it if no satisfactory 3D line segment is found, as
described later). We traverse a set of candidate 3D line segments

(a) (b) (c)

(d) (e)

Figure 11: (a) Input photograph before view dependence correc-
tion. (b) Ratio image obtained from rasterizing the model with a
smooth ratio map, based on the ratio of blended texture skin pixel
values to input pixel values. Constructing the ratio map in UV space
allows it to be smoothed without consideration of discontinuities in
the camera view. (c) Input photograph multiplied by ratio image.
(d) Zoom of (a). (e) Zoom of (b). Note the supression of view-
dependent reflectance, especially near grazing angles.

by projecting li into each other view vj (we rasterize into vj a line
corresponding to the ray through the center of li in view vi) and
considering each line segment lj that it intersects. The intersection
of 2D line segments li in view vi and lj in view vj uniquely de-
termines a 3D line segment lij via a 3D orientation triangulation
similar to that in [Wei et al. 2005]. We call this 3D oriented line
segment a hair particle. We then project the center of lij onto the
facial surface along surface normals to determine a UV coordinate.
We reject lij if the hair indicator map from Section 5.3 is false at
that UV coordinate, or if the center of lij is too far from the surface
(more than 1cm). We next compute a color for lij by averaging
the pixel colors of the particle’s projected position in unoccluded
views (using the view-dependence-corrected pixel values from Sec-
tion 6.1). We reject lij if its color is too similar to the underlying
texture, based on a user defined threshold. We gauge the likelihood
of lij by counting how many 2D oriented line segments agree with
it in all unoccluded camera views (called the supporting line seg-
ments). We search for supporting line segments in a 5 × 5 pixel
window around the 2D projected position in each view where lij
is unoccluded by the facial geometry. A line segment supports the
particle if the following condition holds, evaluated in image space:

((p− c) · n)2 + 16(d · n)2 < 3, (20)

where p is the projected particle position, d is the projected particle
orientation, c is the center of the 2D line segment and n is the 2D
normal of the 2D line segment. This is a threshold heuristic that
penalizes the projected distance from particles to 2D line segments,
and penalizes the difference between projected particle orientation
and 2D line segment orientation with greater weight. The coeffi-
cients were determined by user-defined tweaking. We reject lij if
supporting line segments are found in fewer than three views. Out
of all the particles lij visited and not rejected, we keep the one with
the most supporting line segments and associate it with li. This
scheme produces a dense set of 3D hair particles with a degree of
redundancy, as particles seeded from different views may overlap



significantly. However, the number of particles produced is not
prohibitive, as it is bounded by the number of 2D line segments
detected in the input images.

6.3 Skin Texture Revision

The hair maps computed in Section 5 contain some amount of false
positives, which result in overly aggressive smoothing of the un-
derlying skin texture in some areas. After the 3D hair particles are
reconstructed (Section 6.2), a new underlying skin texture may be
computed by rasterizing the hair particles into all views, then repro-
jecting the skin texture from the views, ignoring pixels that are oc-
cluded by hair. Skin texture areas that are occluded in all views are
smoothed over and blending is performed using the same gradient-
based scheme as in Section 4.3. Figure 12 illustrates the result of
this revised texture projection.

(a) (b)

Figure 12: (a) Skin texture with overly aggressive smoothing due
to false positives in hair indicator map. (b) Revised skin texture
using the reconstructed 3D hair particles to evaluate visibility.

7 Results

We show facial geometry and hair particle reconstruction results
for three different subjects, two with light colored hair and one
with dark colored hair. The hairs are rendered using a simple ras-
terization algorithm using z buffering to handle occlusion. Figure
1(b-d) shows gray renderings of the results for the three subjects,
with Figure 1(a) showing a detail region of the first subject with
skin texture and colored particles, as well as a false color rendering
showing the fidelity of recovered hair orientation. Figure 13 shows

(a) (b)

Figure 13: (a) Face model rendered with shaved skin texture map
and colored hair particles. (b) False colored rendering to show ge-
ometric detail and hair particle orientation.

textured and false colored renderings of the second subject. A vari-
ety of hair types are reconstructed, including eyebrows, eyelashes,
and stubble. Some false positives appear in the eyes due to spec-
ular reflections of the small lights used to illuminate the subject.
Figure 14 shows textured renderings of the third subject, highlight-

(a) (b)

Figure 14: (a) Face model rendered with shaved skin texture map
and colored hair particles. (b) Zoom of (a) to show detail.

ing the recovered detail in the eyelashes and eyebrows. We also
show results for faces without facial hair reconstruction, to compare
our equalized cross correlation photoconsistency term to the more
common normalized cross correlation. Figure 15 shows results for
two subjects, illustrating the increased detail obtained from ECC
without sacrificing smoothness, as observed earlier in Figure 4 for
a hairy face. Using NCC, if the smoothing strength is increased
to obtain similar smoothness in the cheeks compared to ECC, then
finer details suffer (e.g. teeth, eyes). Likewise, if the smoothing
strength is decreased to obtain similar sharpness in fine features
compared to ECC, then smooth areas such as the cheeks become
noisy. In previous works, similar attributes have been obtained us-
ing ad-hoc smoothing term heuristics. In contrast, ECC is derived
from a principled model of image noise and variance, and the geo-
metric smoothing term is not modified.

8 Conclusion and Future Work

We have proposed a method for facial hair capture that makes use
of existing data from multi-view stereo face capture, requiring no
changes to typical passive stereo capture set-ups. The method is
automatic, and generates a hairless face model and skin texture,
and a particle-based hair model. We introduced the equalized cross
correlation cost function (ECC), which serves as an improved pho-
toconsistency measure useful to stereo geometry reconstruction in
general. We leverage the meaningful residual error in ECC-based
stereo reconstruction to help identify areas containing facial hair.
We also described methods for removing facial hair from recon-
structed facial geometry and texture, and a method for reconstruct-
ing the facial hair as a set of 3D oriented particles.

Three notable areas remain ripe for future work. First, we would
like to explore improved reflectance modeling of the hair, enabling
photorealistic rendering. Second, many people have extremely fine
facial hairs that are invisible from a frontal view (the so-called
“peach fuzz”). It may be possible to reconstruct peach fuzz by care-
ful analysis of the silhouettes of the face. Third, we would like to
combine our method with 3D hair growth strategies that model hairs
as connected curves rooted to the face (such as [Beeler et al. 2012]).
This might reduce false positives, such as the “floaters” visible over
some areas, and may enable extending the method to handle longer
facial hair such as long beards, and possibly the unification with
solutions for reconstructing hair on the scalp.
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