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Abstract

We present a semi-automatic technique for computing surface correspondences between 3D facial scans in differ-
ent expressions, such that scan data can be mapped into a common domain for facial animation. The technique can
accurately correspond high-resolution scans of widely differing expressions – without requiring intermediate pose
sequences – such that they can be used, together with reflectance maps, to create high-quality blendshape-based
facial animation. We optimize correspondences through a combination of Image, Shape, and Internal forces, as
well as Directable forces to allow a user to interactively guide and refine the solution. Key to our method is a novel
representation, called an Active Visage, that balances the advantages of both deformable templates and corre-
spondence computation in a 2D canonical domain. We show that our semi-automatic technique achieves more
robust results than automated correspondence alone, and is more precise than is practical with unaided manual
input.

1. Introduction

Just as portraiture is one of the most challenging but im-
portant aspects of painting, rendering human faces is one
of the most challenging but important aspects of computer
graphics. Progress in this area has accelerated greatly, with
recent results in research, movies, and video games building
the first bridges across the Uncanny Valley towards believ-
ably realistic digitally rendered faces. However, creating a
photorealistic digital actor remains complicated and time-
consuming [ARL∗10], which prevents their widespread use.

Recent 3D scanning techniques provide useful data for
creating digital faces based on real people, able to be ren-
dered with any viewpoint and lighting. Since the appearance
and deformation of emotive faces is complex, many digital
characters are built from numerous scans of an actor making
different expressions called blendshapes, interpolating be-
tween them to create facial animation. Blending between ex-
pressions, however, requires knowing how the surface points
in each scan correspond to each other. Determining such cor-
respondences can be made easier by placing markers on the
actor’s face, but this is time consuming and mars the ap-
pearance of the actor; moreover, even hundreds of markers
yield little information about dynamic skin wrinkle behav-
ior. A dynamic facial scanning system can also make the
task easier, since the transition from one expression to an-
other is recorded as a sequence of scans with little motion
between them. However, dynamic scanning systems are typ-
ically very data intensive and provide far lower resolution
geometry and reflectance than systems which record static
facial expressions. As a result, building the highest-quality
digital characters requires determining accurate correspon-

dences between scans of significantly differing expressions
without the aid of facial markers. And typically, this is one
of the most difficult stages of the character creation process.

An important step in creating an animatable character is
to create a facial animation rig, often built on top of an ani-
mation mesh of moderate resolution augmented by high res-
olution detail textures (e.g., albedo, normals, etc.). Comput-
ing correspondences on the high resolution scan meshes, and
subsequently downsampling to the animation mesh produces
suboptimal results. To obtain the highest quality blend-
shapes, both the animation mesh and the detail textures need
to be optimally corresponded. Downsampling a high reso-
lution mesh does not guarantee the latter because important
visual details in the textures do not necessarily align with
vertices.

While exact 1 : 1 correspondences exist between the phys-
ical expressions, they might be difficult to uniquely identify
between facial scans (e.g., appearance and disappearance of
wrinkles). In such a case it is often difficult to find consis-
tent 1 : 1 correspondences. Automated methods often rely
on heuristics (e.g., smoothness) to handle such ambiguous
cases. A more robust solution is to add case-specific user-
defined constraints to these automatic methods. However,
such an approach often results in a trial-and-error procedure,
where the focus lies on avoiding undesired behavior of the
automatic algorithms by tweaking and adding non-intuitive
constraints. Instead, it would be better to have the user par-
ticipate in the correspondence estimation process in a con-
structive manner by directing the computations rather then
constraining and/or correcting them.

We propose a novel correspondence method, that we
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call Facial Cartography, for computing correspondences be-
tween high resolution scans of an actor making different
expressions, to produce mappings between a user-specified
neutral mesh and all other expressions. A key difference
between the proposed method and prior work is that we
allow the user to participate and provide direction during
the correspondence computations. Additionally, we com-
pute correspondences on the final animation mesh and de-
tail textures. To ensure optimal detail texture alignment
and interactive user interaction, we leverage the GPU, and
adopt an analysis-by-synthesis approach. A key component
in our system is an Active Visage: a proxy for represent-
ing corresponded blendshapes that can be visualized from
one or more viewpoints to evaluate the difference (i.e., er-
ror) with ground-truth visualizations of the surface proper-
ties of the target expression. While conceptually similar to
a deformable template, a key difference is that a deformable
template deforms a 3D mesh, while an active visage is con-
strained to the manifold of the non-neutral expression geom-
etry, and hence only deforms the correspondences and not
the 3D shape.

We have developed a modular optimization framework in
which four different forces act on these active visages to
compute accurate correspondences. These four forces are:

1. Image Forces: favoring correspondences providing the
best alignment of fine-scale features in the detail maps;

2. Shape Forces: providing soft constraints on the 3D ver-
tex positions of the optimization estimate;

3. Internal Forces: avoiding implausible deformations by
promoting an as-rigid-as-possible deformation; and

4. Directable Forces that in conjunction with a GPU imple-
mentation of the other forces, enable user-participation in
the optimization process, and direct the optimization.

2. Related Work

Computing correspondences between two surfaces is a clas-
sical problem in computer graphics and computer vision, and
a large body of prior work investigates variants of this chal-
lenging problem. The ability to establish accurate surface
correspondences enables a variety of applications such as the
animation and morphing of shapes, shape recognition, and
compression. Describing all prior work in correspondence
computation is beyond the scope of this paper; we thus fo-
cus on the most relevant work to compute correspondences
between a scan of a neutral reference pose and scans of a
small set of extreme poses of a subject.

3D Methods. Allen et al. [ACP02] construct a kinematic
skeleton model for articulated body deformations from range
scan data and markers. Chang and Zwicker [CZ09] propose
a markerless registration method that employs a reduced de-
formable model, and they decouple deformation from sur-
face representation by formulating weight functions on a
regular grid. Both methods are geared towards articulated

objects, and are not well suited for modeling facial anima-
tions.

Brown and Rusinkiewicz [BR04, BR07] and Amberg et
al. [ARV07] develop a non-rigid variant of the well known
Iterative Closest Points (ICP) algorithm [BM92] to align
rigid objects where calibration errors introduce small non-
rigid deformations in the scans. A disadvantage of these ap-
proaches is that they can easily converge to a suboptimal
solution due to their greedy nature.

Li et al. [LSP08] form correspondences by registering an
embedded deformation graph [SP04] on the source surface
to match the target surface. Key to their method is an opti-
mization that robustly handles missing data, favors natural
deformation, and maximizes rigidity and consistency. How-
ever, this method is limited to the resolution of the defor-
mation graph, and cannot handle very small non-rigid de-
formations. [LAGP09] alleviates this for temporally dense
input sequences by computing a displacement projection to
the nearest surface point. However, this projection does not
rely on surface features, and thus can introduce small errors.

2D Methods. Another strategy for establishing corre-
spondences between two non-rigidly deformed shapes is
to embed them in a 2D canonical domain, reducing the
correspondence problem to a simpler 2D image match-
ing problem. Anguelov et al. [AKS∗05] introduce corre-
lated correspondences to compute an embedding of each
shape that preserves geodesics and thus minimizes differ-
ences due to deformations. Anguelov et al. employ this al-
gorithm to create SCAPE [ASK∗05], a data-driven model
that spans both deformation as well as shape of a hu-
man body. Wang et al. [WWJ∗07] investigate several differ-
ent types of quasi-conformal mappings with regard to 3D
surface matching, and conclude that least squares confor-
mal mapping is the best choice for this purpose. Zeng et
al. [ZZW∗08] observe that most conformal mapping meth-
ods are not suited to deal with captured data due to inconsis-
tent boundaries, complex topology, and distortions. To ad-
dress these issues, they compute correspondences from mul-
tiple boundary-constraint conformal mappings. Recently,
Lipman and Funkhouser [LF09] proposed Möbius voting,
an algorithm for finding point correspondences between two
near-isometric surfaces in polynomial-time. It selects the
Möbius transform that minimizes deformation error of the
two surfaces in a canonical domain. Besides the sensitivity
to scanning noise and inconsistent boundaries, these embed-
ding based strategies also assume that the deformed meshes
are isometric, which is not truly the case for most surface
deformations. Consequently, the resulting correspondences
may be affected. To handle non-isometric surfaces robustly,
Zeng et al. [ZWW∗10] apply a higher-order graph match-
ing scheme on the combined embedding space determined
by the Möbius transform and the Gaussian map of the sur-
face. While mathematically elegant, the exact mapping to
these embedded spaces are non-intuitive, making it difficult
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for users to manipulate and correct the computed correspon-
dences.

Litke et al. [LDRS05] propose a variational method that
matches surfaces in a 2D canonical domain. Similar to the
proposed technique, their matching energy takes into ac-
count various cues such as curvature and texture. Further-
more, it allows user-control in the form of feature lines (as
opposed to point-wise constraints). While their system can
produce impressive results, it is limited to surfaces that are
homogeneous to a disk. Eyes and mouth need to be manually
segmented out.

Blanz and Vetter [BV99] create a morphable face model
from a database of static laser scans of several individ-
uals in different expressions. To correspond the different
expressions, a combination of optical flow and smoothing
is employed, exploiting the native cylindrical output pa-
rameterization of the laser scanner. In subsequent work, a
similar approach was used to create a morphable mouth
model [BBVP03]. Huang et al. [HCTW11] employ a sim-
ilar method for aligning small scale details, while large scale
deformations are registered using a marker-based approach.
A general problem with optical flow based methods is that
they succeed in some cases but fail entirely on seemingly
similar cases. User input is often employed to constrain the
optical flow algorithm to produce a suitable solution. How-
ever, it is not always intuitive how a particular optical flow
optimization trajectory will respond to specific constraints,
leading to a trial-and-error procedure.

Analysis-by-synthesis. A key component in our system is
the GPU-accelerated real-time visualization and feedback
system. However, we are not the first to include graphics
hardware in a registration pipeline. Pighin et al. [PSS99] and
Pons et al. [PKF07] iteratively refine the correspondences by
evaluating the error on the deformed target surface and the
predicted deformed source surface. Blanz and Vetter [BV99]
also employ an analysis-by-synthesis loop to match a mor-
phable face model to one or more photographs of a subject.
However, none of these methods provide a way for the user
to correct erroneous correspondence estimates.

User-interaction. Finally, all prior methods have aimed at
making the registration process as automated as possible.
User interaction has only been employed to either initial-
ize the computations [DM96, ACP02, LDRS05, ZZW∗08]
or to constrain the solution space to avoid local min-
ima [BBVP03, HCTW11] However, none of the previous
methods actually allows the user to direct the correspon-
dence computations as part of the main optimization loop.

3. Algorithm

Input. Our correspondence algorithm takes as input a set of
scanned meshes and high resolution detail maps of a subject,
each exhibiting a different expression. One of these expres-
sions, the most neutral one, is selected as a reference pose,

and an animation mesh is created for this expression, which
can serve as the basis for an animation rig. This animation
mesh can either be created by an artist based on the scanned
mesh or can be a direct copy of the acquired neutral mesh.
Additionally, the animation mesh is augmented by high res-
olution detail textures that can contain diffuse and specular
albedo information, surface normal information (to compen-
sate for the differences in fine geometric details between the
animation mesh and the scanned mesh), etc.. This animation
mesh is subsequently deformed to roughly match the target
mesh. This can either be done by an artist, or by using any
suitable automatic method discussed in Section 2. This de-
formation does not need to be exact; it is only used to boot-
strap the optimization.

Goal. The goal of Facial Cartography is to create dense
mappings between the user selected neutral mesh and all
other expressions. A distinctive feature of Facial Cartogra-
phy is that it was developed with the following two points
in mind. First, to provide an intuitive and effective user ex-
perience, Facial Cartography allows the user to interactively
participate during the computations of the correspondences.
This allows the user to direct the computations away from lo-
cal minima and even bias the computations to a subjectively
preferred solution. Second, the need to correspond scans of
different expressions is to aid in the creation of animation
rigs. Therefore, to obtain high quality animation rigs, com-
puted correspondences need to be optimal with respect to
the actual animation mesh, the detail textures and their cor-
responding UV mappings.

Optimization. We frame the computation of correspon-
dences between two surfaces as a energy-minimization op-
timization in which the user can participate via a live, in-
teractive simulation while the optimization is in progress.
To achieve this we consider the objective function as an en-
ergy potential function U , indicating how well the two sur-
faces are in correspondence, associated with a conservative
force f, where f=−∇U . This objective function can be min-
imized using a gradient-descent optimization, displaced by f
at every iteration. We identify the following four forces that
play a role in the correspondence optimization:

• Image Forces: ensure proper registration of the features
in the high resolution detail maps. Image forces are com-
puted via an analysis-by-synthesis approach (Section 5).

• Shape Forces: allow the user to provide soft constraints
on the 3D vertex positions of the animation mesh. (Sec-
tion 6).

• Internal Forces: constrain the correspondence solution
such that undesirable or impossible deformations (e.g.,
collapsing of triangles) are avoided by enforcing an as-
rigid-as possible deformation (Section 7).

• Directable Forces: allow the user to direct the optimiza-
tion (Section 8).

The key distinctive feature of Facial Cartography is not
the general optimization above, but the combination of the
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forces and the domain on which we apply the optimization.
We define the optimization domain directly onto the target
manifold (i.e., the non-neutral expression mesh). To facili-
tate the correspondence computations over this domain, tak-
ing into account the animation mesh and detail textures, and
supporting the analysis-by-synthesis approach for the image
forces, we create a proxy called the Active Visage that repre-
sents one of the possible deformations of the neutral expres-
sion constrained to the target surface (Section 4).

At every iteration in the optimization, we remap (and re-
sample if necessary) the four forces to the vertices in the 2D
optimization domain that comprise the active visage. The fi-
nal resulting force acting on each vertex is then a weighted
sum of each of the remapped forces. The user can enable and
disable different forces during the optimization, and mod-
ulate their weights: typically we use an image weight be-
tween 4 and 8, shape weight = 1, internal weight = 1, and
directable weight = 1.

4. Active Visage

As noted in the previous section (Section 3), we define the
optimization domain directly onto the target manifold, and
optimize correspondences only, not shape. Intuitively, one
can visualize this as gliding and stretching a rubber sheet
over the target surface (i.e., maintaining contact with the tar-
get surface) until specific constraints are fulfilled (specified
by forces in our optimization framework).

While it makes sense to define the optimization domain
directly on the target manifold, it is not always the most
straightforward parameterization to compute the forces that
drive the optimization. To facilitate the force computations,
we create a proxy called the Active Visage, where every point
in the optimization domain has an associated 3D position
(constrained to the target manifold) and corresponding sur-
face properties borrowed from the neural expression. An ac-
tive visage represents one of the possible deformations of
the neutral expression onto the target surface. As such, an
active visage supports all operations that otherwise would
have been performed on the neutral and/or target expression
(e.g., visualization).

Implementation. Practically, we implement an active vis-
age as follows. An active visage is a mesh that has the
same connectivity as the animation mesh. Every vertex has
a texture coordinate, which stays constant during optimiza-
tion, that maps to the high resolution detail textures (ob-
tained from the scanned neutral expression). Furthermore,
every vertex has a correspondence estimate. This estimate
is defined as a texture coordinate in the target expression
mesh’s native texture parameterization or any other suitable
2D mapping (e.g., conformal mappings, or in case of 2.5D
scans, this parameterization can be in the captured image
space). The exact form of the 2D map is less important as
long as we can map between surface coordinates and tex-
ture coordinates. For every correspondence estimate, we also

store its 3D coordinate on the target manifold and update it
at every iteration of the optimization using a reverse lookup.
The active visage can be easily rendered, mapped with any
channel of information from the neutral expression and from
any viewpoint.

Discussion. Conceptually, the active visage representation
falls in between computing correspondences using a de-
formable template mesh and computing correspondences in
an intermediate 2D domain.

The key difference between a deformable template and
an active visage is that a deformable template deforms a
3D mesh, while an active visage is constrained to the mani-
fold of the non-neutral expression geometry, and hence only
deforms the correspondences. Solving the correspondence
problem by finding a suitable deformation of an input or
template mesh such that it matches a given target mesh sub-
ject to method-specific constraints (e.g., as-rigid-as-possible
deformation, map constraints, etc.) spends significant re-
sources in optimizing the shape (a 3D problem), and not the
correspondences (a 2D problem).

At a high level, computing correspondences using an ac-
tive visage is similar to computing correspondences in an
intermediate 2D domain (e.g., conformal mapping): in both
cases the optimization domain is 2D. However, a distinct dif-
ference is that an active visage represents a 2D manifold in
3D space defined by the final animation mesh. Often, the
final animation mesh is an artist-tuned mesh where edges
are aligned with specific features (e.g., ring-like structure
around eyes and mouth), hence alignment of these features
is important. Many intermediate 2D parameterizations are
defined by optimizing vertex positions in a 2D domain to
satisfy some preset constraint. Consequently, straight edges
in 3D on the target manifold do not necessarily correspond
to straight edges in the 2D parameterization, significantly
complicating the alignment of edge features especially when
the mesh resolution of the animation mesh and the scan dif-
fer. A similar problem occurs for the high resolution detail
maps. Such detail textures are commonly employed to com-
pensate for the lack of detail in the artist designed anima-
tion mesh. Since these detail maps greatly influence the ap-
pearance (e.g., normal maps) of the visualizations of the an-
imated mesh, optimally corresponding the features in these
maps is of utmost importance. Active visages provide a nat-
ural means of dealing with these issues. Although the opti-
mization domain is 2D, edge and texture projections do not
introduce discrepancies because the active visage is defined
on a 3D manifold that corresponds to target manifold. More-
over, the active visage, in conjunction with the analysis-by-
synthesis approach, allows Facial Cartography to take in ac-
count for the correspondence computations any “errors” in
shape due to the lower resolution of the animation meshes.
By employing an analysis-by-synthesis approach, we ensure
that the features in the detail textures are visually registered
consistently for the whole animation rig.
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Image Forces Projections Image Force Projections

 Shape Force

 Internal Force

Directable Force

Figure 1: Forces acting on an active visage, shown in their
native formulations, and after remapping (“Projections”).
Arrows have been scaled up for visibility.

While a template or an intermediate 2D projection could
arguably be extended to correctly handle all these condi-
tions, we believe that the “active visage” makes this more
convenient.

5. Image Forces

Image forces provide a mechanism to incorporate non-
geometric cues, such as for example, texture information
which is often available at a much finer granularity than
the mesh resolution. Resampling this texture information on
the mesh can result in a loss of important high frequency
information. Instead, it is better to employ an analysis-by-
synthesis approach, where image forces are computed on 2D
visualizations of this high resolution data.

Input. The computation of an image force takes as input
two 2D visualizations: a visualization of the active visage
(i.e., the animation mesh deformed according to the current
correspondence estimate) and a visualization of the target
mesh. Both visualizations are from the same viewpoint, and
display the same set of surface properties.

Force Computation. The main goal of the image force is to
express how the active visage should be warped such that its
visualization better matches the corresponding visualization
of the target expression. There are many possible methods
for computing such image forces (e.g., optical flow). How-
ever, to maintain interactive rates suitable for user participa-
tion, we harness the computing power of the GPU, and opt
for a local cross-correlation window-matching approach.

A typical local cross-correlation window-matching ap-

proach works as follows. First, a number of feature loca-
tions are selected in the active visage visualization A. Then,
a mean-subtracted discrete cross-correlation is computed be-
tween a given window centered around each feature location
in A and in the target visualization B:

(As ?Bs)(p,q) ≡
η

∑
τ=−η

η

∑
υ=−η

[(A(su + τ,sv +υ)−〈As〉) ·

(B(su + τ+ p,sv +υ+q)−〈As〉)] , (1)

where s = [su,sv]
T is the window center (i.e., feature point

location), 〈As〉 is the mean value of A within the window, and
the window size is (2η+1)× (2η+1). We found that a η

of either 7 or 15 gave the best quality versus computational
cost ratio. If the cross-correlation As ?Bs yields a significant
peak in the window, then we compute the centroid [p,q]T

of the peak, which indicates the displacement of the feature
between the visualizations.

We can optimize this computation by observing that both
the texture coordinates and the content of the detail maps
of the active visage do not change during the optimization.
Hence, we can precompute the feature locations in texture
space, and at each iteration project the precomputed feature
locations into the visualization viewpoint, which can be done
very efficiently.

Surface Properties and Feature Selection. The exact
choice of surface properties should provide a maximum
number of distinctive cues, and thus good image forces, to
drive the correspondence optimization. In our implementa-
tion we employ a high-pass filtered version of the skin tex-
ture, and use Shi and Tomasi’s method to detect good fea-
tures [ST94]. This ensures that significant changes in skin-
texture are well aligned. These major changes in skin-texture
are well located in space (i.e., a high-frequency peak) and
correspond to the same surface location. However, other sur-
face properties, such as Gauss curvature, can also provide
additional cues in conjunction with the high-pass filtered
skin-texture.

Visualization Viewpoints. While the vertices of the anima-
tion mesh are constrained to the target mesh, both meshes
do not necessarily form the same manifold in 3D space,
due to the differences in resolution between the animation
mesh and the target mesh. In order to minimize visual arti-
facts because of differences in shape, we employ an analysis-
by-synthesis (i.e., inverse rendering) approach for comput-
ing the image forces. In particular, for good coverage of the
face, we compute image forces for five different viewpoints:
frontal, upper left, upper right, lower left, and lower right.

Aggregate Image Force. Finally, we need to resample,
remap and combine all computed image forces to the op-
timization domain (i.e., the target manifold):

• Resample: the locations of the sparse features at which
the image forces are computed are most likely not the
same as the locations of the mesh vertices (projected into
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the virtual viewpoint). We therefore first need to resample
the computed image forces to each vertex location. For
this we employ a Gaussian weighted radial basis function
based on the distance between the sparse feature location
(on the mesh) and the vertex location.
• Remapping: Next we need to remap each of the com-

puted (resampled) forces from the visualization domain
to the optimization domain. Care has to be taken to cor-
rectly account for the change in differential measure by
multiplying the resampled image forces by the Jacobian
of this transform (i.e., from image pixels to a local tan-
gential field around the target vertex).
• Combine: Finally, we add all image forces from the dif-

ferent virtual viewpoints into a single net image force.

Figure 1 (left) shows the visualizations of an active visage
and corresponding target expression for the five different
viewpoints, the image forces in the visualization domain and
the corresponding remappings onto the animation mesh in
the optimization domain.

6. Shape Forces

Shape forces allow the user to provide soft constraints on the
3D vertex positions of the active visage. This is an ancillary
soft constraint as opposed to the primary hard constraint that
the vertices of the active visage lie on the target manifold.

Input. The computation of a shape force takes as input a
deformed 3D mesh that has the same connectivity as the an-
imation mesh (and thus the active visage). While the 3D ver-
tices of the active visage are constrained to the target man-
ifold, we do not require the same from the input deformed
mesh, because it is often more convenient for the user to
specify constraints on the vertex positions in the form of a
deformed animation mesh or by deforming the 3D shape of
the (current) active visage.

Force Computation. Because we require the input de-
formed mesh to have the same connectivity, computation of
this force is trivial. The shape force on a vertex of the active
visage is proportional to the distance to the corresponding
vertex in the input deformed mesh. The resulting 3D force
is subsequently remapped onto the 2D optimization domain.
For this we need to multiply the resulting 3D shape force
vector with the Jacobian describing the difference in differ-
ential measure from 3D to the local tangent plane around the
vertex on which the shape force acts. Figure 1, 2nd row right,
shows the 3D shape force and its remapping.

Application. In our implementation, we allow the user to
exert shape forces in two instances:

1. To bootstrap the method, a deformed version of the an-
imation mesh, roughly matching the target shape, serves
as input to the shape force. Depending on the accuracy of
this initial guess, the user may opt to reduce the influence
of this initial guess by gradually lowering the weight of
the resulting shape force as the optimization progresses.

2. We furthermore allow the user to select an intermediate
solution at any iteration as a soft constraint. This is useful
when the user decides that the current solution provides
a good base configuration; it can also serve as a tool to
avoid getting stuck in a local optimum.

7. Internal Force

The above shape and image forces encourage similarity be-
tween corresponded points. However, by doing so, spatial or-
dering relationships are ignored. For example, the spatial re-
lationship between two surface points (e.g., point A is above
point B), is unlikely to reverse on a physical subject between
different expressions, but swapping their position might (de-
pending on the input data) numerically minimize the shape
and image force. To avoid such physically implausible de-
formations, we introduce an Internal Force that promotes an
as-rigid-as-possible deformation.

Input. The internal force only depends on the geometric
ordering of the vertices in the animation mesh corresponding
to the neutral expression (i.e., “resting state”), and on the
current ordering in the active visage.

Force Computation. We define a strain stress imposed by
the deformation of the active visage relative to the “resting
state”. We treat edges of the active visage as springs, with
equilibrium length defined as the length of the edges in their
“resting state”. Displacements of mesh vertices representing
non-rigid deformations will change the edge lengths, and re-
sult in a restoring force:

ρ j =

{
− ε j
‖ε j‖κ

(∥∥ε j
∥∥−λ j

)
if
∥∥ε j
∥∥> λ j,

0 if
∥∥ε j
∥∥≤ λ j.

(2)

Here, λ j is the equilibrium length of the edges, and ε j is
the edge vector, and κ is a spring constant. The net resulting
3D internal force per vertex is then the sum of all restoring
forces acting on that vertex. This 3D internal force can be
easily and efficiently computed on the GPU. Finally, similar
to the shape force, this 3D force vector needs to be remapped
to the 2D optimization domain (Section 6).

Orthogonal Forces. In practice there are instances in which
the computed 3D internal force is nearly orthogonal to the
local tangent plane around the vertex on the target manifold
on which the internal force acts, resulting in a negligible in-
ternal force (when mapped to the optimization domain) de-
spite a potentially large deformation strain stress. We there-
fore also compute 2D internal forces directly on the 2D cor-
respondence estimate (i.e., a texture coordinate in the tar-
get expression mesh’s native texture parameterization (Sec-
tion 4-Implementation)). This 2D internal force is remapped
to the optimization domain and added to (remapped) 3D in-
ternal force. Figure 1, 3rd row right, shows the 3D internal
force and its 2D mapping.
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Figure 2: Intermediate states of the Active Visage as the simulation progresses, shown at an interval of 70 iteration steps. Top:
3D visualization of the active visage; Middle: active visage and corresponding forces overlayed on frontal camera view of the
target subject; Bottom: band-pass filter texture overlayed with the aggregate forces (scaled up for visibility).

8. Directable Force

The final forces that drive the correspondences optimization
are the user directable forces. These forces, in conjunction
with the GPU implementation of the other forces, enable
the user to participate in the optimization process, and guide
the optimization. The motivation for bringing the user in the
loop is two-fold:

1. It allows the user to prevent the correspondence compu-
tation from getting caught in a local optimum. In such a
case, the user can pause the simulation (disabling other
forces) and interact with the active visage, updating the
optimization estimate through the directable force alone.
Once the estimate is free of the local optimum, the opti-
mization can be resumed to snap the solution into place
for optimal correspondence.

2. It furthermore, allows to user to steer the solution (as the
simulation is running) to a subjectively preferred solution:
the correspondence with the lowest error does not neces-
sarily correspond to artifact-free blendshapes.

While there are many possible ways for the user to spec-
ify directional forces, we have implemented two: dragging
of points on the manifold, and pinning (i.e., temporarily fix-
ing) points on the manifold. As was the case with any of
the prior forces, care has to be taken when remapping the
corresponding directional force to the optimization domain.
For example, if the user specifies directable forces in visu-
alizations of the active visage, then the same Jacobian as in

Section 5 needs to be applied. Figure 1, last row right, shows
an example of a directable force and its remapping to the tar-
get manifold. We refer the reader to the accompanying video
and supplemental material for a demonstration of the user-
interaction in Facial Cartography.

9. Results

We applied our technique to two facial expression datasets,
each containing approximately 30 high resolution scans of
a subject in various facial expressions. Each scan, acquired
using the technique of [MHP∗07], includes a high-resolution
geometry (approximately 1.5 M polygons) and photometric
textures and normal maps (approximately 2K resolution),
of diffuse and specular components. Note that our corre-
spondence technique is equally suited to data obtained us-
ing other high-quality scanning methods such as [WMP∗06,
BBB∗10].

Each dataset includes a neutral pose, which an artist re-
meshed into a low-polygon (approximately 2000 polygons)
animation mesh along with a UV texture space layout for the
detail maps. We then used our technique on each expression
to find the correspondences to neutral which would provide
the best visual consistency for the desired animation mesh.
Figure 2 shows a sequence of intermediate results (visual-
ized using active visages) of the correspondence optimiza-
tion for a single expression at a selected number of itera-
tions.
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Figure 3: Facial expression corresponded to a subject’s neu-
tral scan. Original captured maps (1st column) are mapped
to the artist-defined common space (2nd column) using the
computed correspondences. The animation mesh (3rd col-
umn), deformed according to the correspondences, is ren-
dered with neutral and expression maps, producing a con-
sistent result which is faithful to the rendering of the full-
res scan data (lower right). Diffuse color texture maps are
shown; renderings are performed using texture and photo-
metric normal maps.

The obtained correspondences allow us to deform the an-
imation mesh into each expression; remap the detail maps
from each expression into the artist-defined UV texture
space (Figure 3); and therefore blend high-resolution details
from different expressions as we deform the low-resolution
animation mesh (Figure 4). In facial animation applications,
the interpolation weights (for both vertex displacements and
detail maps) would come from rig controls and their associ-
ated weight maps, as in [ARL∗10].

Comparison to other techniques. We compare our tech-
nique with two alternatives for computing high-quality facial
scan correspondences:

1. optical flow based alignment (based on [BBPW04]), and
2. manual (skilled) artistic alignment.

We compute correspondences on four different extreme fa-
cial expressions, each having one or more regions of pro-
nounced deformation, as well as a change in topology com-
pared to the neutral mesh (i.e., opening or closing of eyes
and mouth). To evaluate how well the three correspon-
dence methods line up fine-scale details, we remap the
bandpass-filtered detail texture into a common, artist-defined
UV texture space, and compute the difference between the
remapped and the neutral detail texture. A visual compari-
son of the three different methods, applied to three of the se-
lected extreme expressions, is shown in Figure 5. The aver-
age RMS errors, from the four selected extreme expressions,
are summarized in Table 1.

While the optical flow approach is automatic and offers

neutral extreme

Figure 4: Synthesis of intermediate expressions by combin-
ing scans which have been mapped into a common domain.

precise alignment (low average RMS error) it can fail on
particularly challenging cases such as those in Figure 5. We
used the optical flow algorithm of Brox et al. [BBPW04],
which we have found to be accurate and robust, albeit com-
putationally intensive. Optical flow systems can be finicky
in general, succeeding in some cases but failing entirely on
seemingly similar cases. Typical failure cases are expres-
sions in which substantial areas of one image (e.g., mouth
interior) are not present in the target image (e.g., mouth
closed).

The manual approach consistently achieves good corre-
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optical flow manual facial cartographyexpression

Figure 5: Comparison. The diffuse texture of each expres-
sion is mapped to the common UV space using each tech-
nique (1st row). We assess fine-scale alignment by high-pass
filtering the textures (2nd row) and computing the difference
between expression and neutral textures after registration
(rows 3−5).

spondences even in challenging cases. However with a man-
ual approach it is impractical to precisely align fine-scale de-
tails (such as skin pores), as seen in Figure 5. Alignment of
such features is important if high-resolution detail maps are
to be blended seamlessly, without introducing ghosting arti-
facts (see video). The results shown for the manual approach
were obtained after approximately 30 minutes of work per
expression by a skilled artist. An interesting observation is

method average RMS error
optical flow 0.16

manual 0.21
Facial Cartography 0.16

Table 1: Average RMS error on corresponded expressions
computed using three different registration algorithms.

that the artist reported diminishing returns: additional small
improvements would require increased amounts of time, in-
dicating that there is a practical upper-limit to how well an
artist can correspond high resolution blendshapes.

Like the manual approach, the interactive Facial Cartogra-
phy approach achieves good correspondences even in chal-
lenging cases. Furthermore it greatly outperforms the man-
ual approach on precision, achieving significantly lower av-
erage RMS error, and doing so in a fraction of the time (ap-
proximately 8 minutes per expression).

Limitations. Compared to a fully automatic method, giving
the user more control, and thus responsibility, results in a
tradeoff. On one hand, it is now up to the user to decide
whether convergence is reached, as it is hard to formulate a
good metric given the element of unpredictability introduced
by bringing the user in the loop. On the other hand, this also
implies that the user can decide to continue working on the
result until a satisfactory result is reached. Furthermore, we
also rely on the user to help the algorithm to do the “right
thing” when the algorithm does not “know” what the right
thing is. However in a production context, having this ability
to correct and direct, is preferable to being fully automatic
but unable to change a “wrong” result.

Another limitation of Facial Cartography is that deep
wrinkles can occlude small areas of the face for some image
force viewpoints. Consequently, the image forces in these
hidden areas may not constrain the correspondence compu-
tations sufficiently to obtain preferable results. Using more
viewpoints or using an advanced physical model of skin
buckling as a prior could mitigate this.

Finally, on less-challenging correspondence cases, fully
automated methods are more likely to converge to a desir-
able result faster than Facial Cartography. The current opti-
mization scheme employed in Facial Cartography is not as
sophisticated as some of the schemes used in advanced auto-
matic correspondence methods. However, the goal of Facial
Cartography is not to obtain correspondences in the fewest
number of iterations, but to make the optimization accessi-
ble, intuitive, and directable.

10. Conclusion

In this work we introduced a novel technique, called Facial
Cartography, for determining correspondences between fa-
cial scans such that they can be mapped to a common do-
main for use in animation. Our approach allows the user to
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participate, interactively, in the optimization as an integral
part of the computations. This provides practical benefits:
empowering the artist to guide the solution to a subjectively
preferred solution; assisted by computation which maintains
a consistent solution which retains detail from the original
measurements.

To make this interplay possible, we propose a novel rep-
resentation, called the Active Visage, which maintains the
advantages of deformable template meshes and computa-
tions in a 2D canonical domain, while avoiding their disad-
vantages. Furthermore, the components of our system such
as the analysis-by-synthesis component, together with the
tightly coupled interaction, may prove useful for a variety of
applications. Therefore in future work we plan to investigate
how our flexible framework can be extended to related prob-
lems in facial animation, such as using captured performance
data to generate control curves for a specific animation rig.

Acknowledgments. We thank N. Palmer-Kelly, M. Liewer, G.
Storm, B. Garcia, and T. Jones for assistance; and S. Mordijck,
K. Haase, G. Benn, J. Williams, M. Trimmer, K. LeMasters, B.
Swartout, R. Hill, and R. Hall for generous support. The work was
partly supported by the Office of Naval Research, NSF grant IIS-
1016703, the University of Southern California Office of the Provost
and the U.S. Army Research, Development, and Engineering Com-
mand (RDECOM). The content of the information does not neces-
sarily reflect the position or the policy of the US Government, and
no official endorsement should be inferred.

References
[ACP02] ALLEN B., CURLESS B., POPOVIĆ Z.: Articulated

body deformation from range scan data. ACM Trans. Graph. 21,
3 (2002), 612–619. 2, 3

[AKS∗05] ANGUELOV D., KOLLER D., SRINIVASAN P.,
THRUN S., PANG H.-C., DAVIS J.: The correlated correspon-
dence algorithm for unsupervised registration of nonrigid sur-
faces. In NIPS (2005). 2

[ARL∗10] ALEXANDER O., ROGERS M., LAMBETH W., CHI-
ANG M., MA W.-C., WANG C., DEBEVEC P.: The digital emily
project: Achieving a photorealistic digital actor. IEEE Comp.
Graph. and App. 30 (July/Aug. 2010). 1, 8

[ARV07] AMBERG B., ROMDHANI S., VETTER T.: Optimal step
nonrigid icp algorithms for surface registration. IEEE CVPR 0
(2007), 1–8. 2

[ASK∗05] ANGUELOV D., SRINIVASAN P., KOLLER D.,
THRUN S., RODGERS J., DAVIS J.: Scape: shape completion
and animation of people. ACM Trans. Graph. 24, 3 (2005), 408–
416. 2

[BBB∗10] BEELER T., BICKEL B., BEARDSLEY P., SUMNER
B., GROSS M.: High-quality single-shot capture of facial geom-
etry. ACM Trans. Graph. 29, 4 (July 2010), 40:1–40:9. 7

[BBPW04] BROX T., BRUHN A., PAPENBERG N., WEICKERT
J.: High accuracy optical flow estimation based on a theory for
warping. In ECCV (2004), pp. 25–36. 8

[BBVP03] BLANZ, VOLKER, BASSO, CURZIO, VETTER,
THOMAS, POGGIO, TOMASO: Reanimating Faces in Images and
Video. Comp. Graph. Forum 22, 3 (2003), 641–650. 3

[BM92] BESL P. J., MCKAY N. D.: A method for registration of
3-d shapes. IEEE PAMI 14 (Feb. 1992), 239–256. 2

[BR04] BROWN B. J., RUSINKIEWICZ S.: Non-rigid range-scan
alignment using thin-plate splines. In 3DPVT (2004), pp. 759–
765. 2

[BR07] BROWN B., RUSINKIEWICZ S.: Global non-rigid align-
ment of 3-D scans. ACM Trans. Graphs. 26, 3 (Aug. 2007). 2

[BV99] BLANZ V., VETTER T.: A morphable model for the syn-
thesis of 3d faces. In Proc. SIGGRAPH (1999), pp. 187–194.
3

[CZ09] CHANG W., ZWICKER M.: Range scan registration using
reduced deformable models. Comp. Graph. Forum 28, 2 (2009),
447–456. 2

[DM96] DECARLO D., METAXAS D.: The integration of opti-
cal flow and deformable models with applications to human face
shape and motion estimation. In IEEE CVPR (1996), p. 231. 3

[HCTW11] HUANG H., CHAI J.-X., TONG X., WU H.-T.:
Leveraging motion capture and 3d scanning for high-fidelity per-
formance acquisition. ACM Trans. Graph. 30, 4 (Aug. 2011),
74:1–74:10. 3

[LAGP09] LI H., ADAMS B., GUIBAS L. J., PAULY M.: Robust
single-view geometry and motion reconstruction. ACM Trans.
Graph. 28, 5 (Dec. 2009). 2

[LDRS05] LITKE N., DROSKE M., RUMPF M., SCHRÖDER P.:
An image processing approach to surface matching. In Proc. SGP
(2005). 3

[LF09] LIPMAN Y., FUNKHOUSER T.: Mobius voting for surface
correspondence. ACM Trans. Graph. 28, 3 (Aug. 2009). 2

[LSP08] LI H., SUMNER R. W., PAULY M.: Global corre-
spondence optimization for non-rigid registration of depth scans.
Proc. SGP 27, 5 (July 2008). 2

[MHP∗07] MA W.-C., HAWKINS T., PEERS P., CHABERT C.-
F., WEISS M., DEBEVEC P.: Rapid acquisition of specular and
diffuse normal maps from polarized spherical gradient illumina-
tion. In Rendering Techniques (2007), pp. 183–194. 7

[PKF07] PONS J.-P., KERIVEN R., FAUGERAS O.: Multi-view
stereo reconstruction and scene flow estimation with a global
image-based matching score. IJCV 72 (April 2007), 179–193.
3

[PSS99] PIGHIN F., SZELISKI R., SALESIN D. H.: Resynthe-
sizing facial animation through 3d model-based tracking. In In
ICCV (1999), pp. 143–150. 3
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