
DisUnknown: Distilling Unknown Factors for Disentanglement Learning

Sitao Xiang1,2, Yuming Gu1,2, Pengda Xiang1,2, Menglei Chai3, Hao Li2, Yajie Zhao2, Mingming He 2

1University of Southern California, 2USC Institute for Creative Technologies, 3Snap Inc.
sitaoxia@usc.edu, {ygu, pxiang}@ict.usc.edu, mchai@snap.com, hao@hao-li.com,

{zhao, he}@ict.usc.edu

Contents

1. Method Details 2
1.1. Derivation of the Negative Log Unlikelihood 2
1.2. Sample-Space Classification 3
1.3. Continuous-Valued Factor Disentanglement . 4

2. Data and Metrics 4
2.1. Data . 4
2.2. Metrics . 4

3. Ablation Analysis 5
3.1. Stability of Stage I 5
3.2. Adversarial Classifier and Condition on Un-

labeled Code in Stage II 6

4. Effect of Factor Correlation 6
4.1. Correlation Between Two Labeled Factors . . 7
4.2. Correlation Between Labeled and Unknown

Factors . 7

5. Comparisons 7
5.1. Visualization 7
5.2. Results . 8

6. Downstream Tasks 9
6.1. Portrait Relighting 9
6.2. Anime Style Transfer 9
6.3. Landmark-Based Face Reenactment 9
6.4. Skeleton-Based Body Motion Retargeting . . 11

1. Method Details

1.1. Derivation of the Negative Log Unlikelihood

Here we show how the form of the adversarial loss of the
classifiers are chosen.

First, we consider the assumed equilibrium of the ad-
versarial training. In Stage I, the goal is that the encoder’s
output should not contain any information about the labeled
factors. So, each classifier Ci can at best make a guess, and
since there is no way to distinguish between inputs from
different classes, it should give the same output class distri-
bution for every sample.

Assume that, as commonly done, the output distribution
of the classifier is computed by taking the softmax of a vec-
tor t = (t(1), t(2), . . . , t(m)), where m is the number of
classes for the factor of concern. Let Sm denote softmax,
we have:

∂

∂t(i)
NLL(Sm(t), k) (1)

=
∂

∂t(i)
− ln

et(k)∑
j e

t(j)

=
∂

∂t(i)
(−t(k) + ln

∑
j

et(j))

=− δik +
et(i)∑
j e

t(j)

=− δik + Sm(t, i),

where δik = 1 when i = k and δik = 0 otherwise. At equi-
librium, the expectation of gradient over the whole dataset
should be zero. Let q = (q(1), q(2), . . . , q(m)) be the class
frequency in the dataset. Then we must have

∂

∂t(i)

∑
k

q(k)NLL(Sm(t), k) (2)

=
∑
k

q(k)(−δik + Sm(t, i))

=Sm(t, i)− q(i)
=0.

That is, Sm(t, i) = qi. So, at the assumed equilibrium, the
classifier should give the class distribution in the dataset as
the output for any input.

If the adversarial objective is to maximize the NLL loss
of the classifier, then naturally at this assumed equilibrium
the expected gradient of the adversarial loss function is also

zero. But, consider the second-order derivatives:

∂2

∂t2(i)
NLL(Sm(t), k) (3)

=
∂

∂t(i)
(−δik + Sm(t, i))

=Sm(t, i)(1− Sm(t, i))

>0,

the adversarial loss function has a local minimum with re-
spect to t at the assumed equilibrium, while the objec-
tive is to maximize this function. So in the proximity of
the assumed equilibrium, the adversarial objective actually
pushes the networks away from the equilibrium. Further-
more, consider the L1 norm of the gradient:

|| ∂
∂t

NLL(Sm(t), k)||1 (4)

=
∑
i

| − δik + Sm(t, i)|

=
∑
i 6=k

Sm(t, i) + (1− Sm(t, k))

=2− 2 · Sm(t, k),

the gradient is larger when the NLL loss is larger, and NLL
is not bounded above. If the adversarial objective is to max-
imize the NLL, it can accelerate towards infinity, which
causes strong instability.

Remember that a basic trick in vanilla GAN is that in-
stead of letting the generator maximize

− ln(1−D(G(z))), (5)

we let it minimize

− ln(D(G(z))). (6)

In a similar vein, instead of maximizing

NLL(p, k) = − ln p(k), (7)

we can minimize what we call “negative log unlikelihood”

NLU(p, k) = − ln(1− p(k)). (8)

The derivatives are computed as:

∂

∂t(k)
NLU(Sm(t), k) (9)

=
∂

∂t(k)
− ln(1− et(k)∑

j e
t(j)

)

=−
∑

j e
t(j)∑

j e
t(j) − et(k)

· −
et(k)(

∑
j e

t(j) − et(k))

(
∑

j e
t(j))2

=Sm(t, k),

∂

∂t(i)
NLU(Sm(t), k) (i 6= k) (10)

=
∂

∂t(i)
− ln(1− et(k)∑

j e
t(j)

)

=−
∑

j e
t(j)∑

j e
t(j) − et(k)

· − −e
t(i)et(k)

(
∑

j e
t(j))2

=− Sm(t, k) · Sm(t, i)

1− Sm(t, k)
.

At the assumed equilibrium Sm(t) = q, where q is the
class frequency in the dataset, these evaluate to

∂

∂t(k)
NLU(Sm(t), k)

∣∣∣∣
Sm(t)=q

(11)

=q(k),

∂

∂t(i)
NLU(Sm(t), k)

∣∣∣∣
Sm(t)=q

(i 6= k) (12)

=−
q(k) · q(i)
1− q(k)

.

If the classes are not evenly distributed in the dataset, this
may not satisfy the condition that the assumed equilibrium
is a stationary point of

∑
k q(k) ·NLU(Sm(t), k). To achieve

this, we need to properly weight the NLU by class. We can
do this by scaling Equation 11 and Equation 12 to match
Equation 1. We define the weighted negative log unlikeli-
hood function as:

NLUq(p, k) = −
1− q(k)
q(k)

ln(1− p(k)). (13)

Then we have, at the assumed equilibrium:

∂

∂t(i)

∑
k

q(k) · NLUq(Sm(t), k)

∣∣∣∣∣
Sm(t)=q

(14)

=
∑
k 6=i

−q(k) ·
1− q(k)
q(k)

·
q(k) · q(i)
1− q(k)

+ q(i) ·
1− q(i)
q(i)

· q(i)

=
∑
k 6=i

−q(k)q(i) + q(i)(1− q(i))

=− (1− q(i))q(i) + q(i)(1− q(i))
=0.

And the L1 norm of the gradient would be:

|| ∂
∂t

NLUq(Sm(t), k)||1 (15)

=
∑
i

1− q(k)
q(k)

· Sm(t, k)

1 +
∑
i 6=k

Sm(t, i)

1− Sm(t, k)

=2 ·

1− q(k)
q(k)

· Sm(t, k),

which equals to Equation 4 at the assumed equilibrium, and
has the desired property that a smaller value of Sm(t, k)
gives a smaller gradient. Evaluating the second derivative
at the assumed equilibrium gives

∂2

∂t2(k)
NLU(Sm(t), k)

∣∣∣∣∣
Sm(t)=q

(16)

=q(k)(1− q(k)),

∂2

∂t2(i)
NLU(Sm(t), k)

∣∣∣∣∣
Sm(t)=q

(i 6= k) (17)

=
q(k)q(i)(2q(i) + q(k) − 1)

(1− q(k))2
,

∂2

∂t2(i)

∑
k

q(k)NLUq(Sm(t), k)

∣∣∣∣∣
Sm(t)=q

(18)

=q(i)(1− q(i))2 +
∑
k 6=i

q(k)q(i)(2q(i) + q(k) − 1)

1− q(k)

=q(i)

(1− q(i))2 +
∑
k 6=i

(
2q(k)q(i)

1− q(k)
− q(k))

>q(i)

(1− q(i))2 +
∑
k 6=i

q(k)(2q(i) − 1)

=q(i)

(
(1− q(i))2 + (1− q(i))(2q(i) − 1)

)
=q(i)(1− q(i))(1− q(i) + 2q(i) − 1)

=q2(i)(1− q(i))
>0.

So the assumed equilibrium is indeed a local minimum of
the adversarial loss function we want to minimize.

1.2. Sample-Space Classification

The Stage I training procedure of generating samples
from random labels for classification is not straightforward
to understand, and here we give an explanation.

The distribution of the encoder’s output in the code space
has few constraints, and there can be different networks that
give very different distribution in the code space but are nev-
ertheless essentially equivalent. For example, assume that
the last layer of the encoder and the first layer of the gen-
erator are linear and the dimension of the code space is d.
Then we can take an invertible d×dmatrixM . We multiply
the last layer weights of the encoder by M on the right and
multiply the first layer weights of the generator by M−1 on
the left. In terms of reconstruction, the modified network

Figure 1: Ill-formed sample generated from mean labeled
code.

gives the exact same result as the original, but the code dis-
tribution in the code space has been transformed.

This becomes a problem with adversarial training: if
the classifier operates in the code space, then to avoid be-
ing successfully classified, instead of removing information
about the labeled factors from its output, the unknown fac-
tor encoder can change its output distribution to confuse the
classifier, which results in the code distribution fluctuating
constantly in the code space.

In contrast, in the sample space, the distribution of gen-
erated samples is anchored to the distribution of training
samples and cannot change freely. So, operating the clas-
sifier in the sample space can potentially reduce fluctuation
in the code space and improve stability. Then the question
is which samples should be the input to the classifier.

The reconstructed sample cannot serve as the input to the
classifier, since it must contain full information of the input
sample, including those about the labeled factors, which is
in conflict with the adversarial objective of making the clas-
sifier unable to classify by the labeled factor.

Another choice is to combine the unknown code with
some kind of “neutral” labeled code, for example, the mean
of all label embeddings. The problem is that the “mean”
labeled code may not be “typical”: as can be seen in Figure
4, in the 3D Shapes dataset, the network learns that the ten
classes of each color attribute are arranged like a circle, but
no samples are distributed near the center of the circle. In
this case, the mean labeled code does not produce a well-
formed sample. An example is shown in Figure 1: on the
left is the input. The floor hue is the unknown factor. In the
generated sample on the right, all labeled factors have been
replaced by the mean embedding, and the generated sample
is ill-formed.

The result is that the encoder can encode labeled in-
formation about the input sample without being detected:
the generator can easily recognize an invalid mean labeled
code, and when it receives one it generates ill-formed sam-
ples so that the classifier cannot classify the generated sam-
ple, regardless of what the encoder has encoded.

So the unknown code used for generating the input to
the classifier must be a typical code but at the same time
independent from the input sample. Thus, we use the em-
bedding of a random label chosen independently from the
input sample.

1.3. Continuous-Valued Factor Disentanglement

When presenting our method, we assumed that all labels
are discrete, class-type labels. Here we discuss the treat-
ment of continuous-valued factors.

Continuous-valued labels are usually associated with re-
gression problems. So it is reasonable to first attempt to
use regressors in place of the classifiers. But there are obvi-
ous problems with this approach. Consider training sam-
ples x(i) each associated with a single, real-valued label
y(i). For each x(i), compute x(i)′ as in Equation 3 in the
main text. The regressor C should minimize some kind
of distance between C(x(i)′) and y(i), say squared distance
(C(x(i)′)− y(i))2. Then, in the assumed equilibrium where
the encoder does not encode any information about the la-
beled factor, the regressor can only make a guess. To min-
imize the expected loss, the best guess should be the mean
of all y(i). Let y∗ =

∑n
i=1 y

(i). Then if there exists training
sample x∗ whose label is y∗ or very close to y∗, any adver-
sarial training would not guarantee to prevent the encoder
from encoding full information of x∗: there is no way to
distinguish whether the regressor is giving a y∗ because it
has detected labeled information in its input, or it is giving
a y∗ because it detected no such information and is making
a guess.

While we have not stated explicitly, we have already pro-
vided the solution to working with continuous-valued fac-
tors: note that in the 3D Chairs dataset, the rotation angle is
not a true category-type factor, but a quantized continuous-
valued factor. Treating it as a category-type factor gives
satisfactory results. Similarly, for any continuous-valued
factor, we can always divide its range into a suitable num-
ber of buckets and quantize the factor into discrete labels.
Generally, a few dozen buckets would work fine.

2. Data and Metrics

2.1. Data

The image size and list of factors of the datasets are given
in Table 1, with the number of possible values of each factor
and the length of code we use for the encoder of that factor.

2.2. Metrics

The Mutual Information Gap (MIG) was originally pro-
posed for the unsupervised setting. We made some ad-
justments to the computation of MIG to suit the weakly-
supervised setting and to allow multi-dimensional code
spaces for each factor.

Let N be the number of factors, Li be the (discrete) ran-
dom variable representing the label of factor i and Xi be
the vector-valued random variable representing the output
of the encoder for factor i, i = 1, 2, . . . , N . Let X(k)

i be the
k-th entry of Xi, which is a real-valued random variable.

Table 1: Datasets used for evaluation and comparison.

Dataset Factor # of Values Code Size

MNIST
28× 28× 1

Class 10 10
(Style) N/A 64

F-MNIST
28× 28× 1

Class 10 10
(Style) N/A 64

3D Chairs
128×128×3

Model 1393 512
Elevation 2 2
Azimuth 31 2

3D Shapes
64× 64× 3

Floor hue 10 8
Wall hue 10 8

Object hue 10 8
Scale 8 8
Shape 4 8

Orientation 15 8

The normalized mutual information between Li and X(k)
j

is defined as in [5]:

Î(Li;X
(k)
j) =

I(Li;X
(k)
j)

H(Li)
. (19)

Then, the multi-dimensional mutual information between
Li andXj is defined by taking the maximum of Î(Li;X

(k)
j)

over k:
Î(Li;Xj) = max

k
Î(Li;X

(k)
j). (20)

One might argue that it is mathematically more meaning-
ful to take the normalized mutual information between Li

and the whole Xj instead. But we found that, as the dimen-
sionality of the code space increases, the number of samples
required to accurately estimate H(Xj) and H(Xj |Li) in-
creases exponentially. And when the number of samples is
insufficient, even a randomly initialized encoder would be
incorrectly computed to have normalized mutual informa-
tion close to one, which makes the evaluation meaningless.
So we have to settle with our current definition.

Then, the MIG is computed as

MIG =
1

N

∑
i

(Î(Li;Xi)−max
j 6=i

Î(Li;Xj)). (21)

As we have noted, in Table 2 in the main text we are only
concerned with the disentanglement between the combined
unknown factor and each individual labeled factor. To re-
flect this, in the computation of MIG here, in Equation 21
we only take the average over i where factor i is labeled.

Special procedures were taken to compute the MIG for
[8]: the definition of MIG requires the distribution of Xj

to have continuous support, for otherwise all the normal-
ized mutual information would be equal to one and the

Figure 2: Average squared code distance.

Table 2: Comparison of result with different Stage II con-
figurations on MNIST.

Configuration MSE ↓ MIG ↑
Standard 0.0086 0.978

Non-adversarial R 0.0103 0.916
No unknown code condition 0.0402 0.930

MIG would be zero. The output of [8] is in the form
of an exact code, rather than a normal distribution as in
VAE-based methods, so the Xj’s will have discrete sup-
port, making MIG non-applicable. Note that during the
training of [8], Gaussian noise with fixed standard devia-
tion was added to the content embedding, which effectively
turns discrete codes into a distribution with full support.
So in the computation of MIG, we similarly add Gaussian
noise with a fixed standard deviation. The standard devia-
tion is chosen using the following procedure: for all possi-
ble pairs of (σ1, σ2) where σ1, σ2 ∈ {10−5, 2 × 10−5, 5 ×
10−5, 10−4, . . . , 1, 2, 5, 10}, we compute MIG by adding
N (0, σ2

1I) to the content (“unknown factor” in our termi-
nology) code and N (0, σ2

2I) to the class (“labeled factor”)
code. The values of σ1 σ2 are chosen so that the average
MIG under two settings on the 3D chairs dataset (rotation
unknown and model unknown) is maximized. By this we
determine that σ1 = 0.05 and σ2 = 0.02.

3. Ablation Analysis
3.1. Stability of Stage I

Our proposed methods of Negative Log Unlikelihood
and sample-space classification aim to improve the stabil-
ity of encoder-classifier adversarial training. Here we eval-
uate the effectiveness of these two schemes. Specifically,
we track the change of code distribution. We take snapshots
of the network at fixed intervals during training. The whole
test dataset is encoded, and we compute the average squared
distance in the code space, from the code of each sample to

(a) β-VAE [9] (b) Factor-VAE [10] (c) β-TCVAE [5]

(d) Pairwise-VAE [4] (e) Lord [8] (f) Ours

Figure 3: Visualizing the disentanglement with test sample distributions.

the code of the same sample in the previous snapshot. In
stable training, the encoder should keep the distance small
while still finding a good distribution.

We train three variants of Stage I on the 3D chairs dataset
with rotation unknown: one standard variant (proposed),
one where the adversarial objective is maximizing the NLL
loss of the classifier, and one where the classifier is an MLP
operating in the code space, with four hidden layers of size
512.

The code distribution is computed every 10,000 itera-
tions until iteration 400,000. The average squared code dis-
tance in the unknown code space every 10,000 iterations
apart is shown in Figure 2, in logarithm scale. We can see
that both NLU and sample-space classification contributed
to reducing the fluctuation in code space.

3.2. Adversarial Classifier and Condition on Unla-
beled Code in Stage II

We evaluate the effectiveness of adversarial classifiers in
Stage II compared to non-adversarial ones and examine the
necessity of the code distance loss term. We train three vari-
ants of Stage II on the MNIST dataset: one standard variant

(proposed), one without NLU term (remove NLU term from
Equation 5e in the main text) so that the classifiers do not try
to distinguish generated samples from real ones in the same
class, and one without code distance term (remove code dis-
tance from Equation 5g in the main text) so that the network
does not explicitly preserve the unknown factor.

The initial network weights of E and G for three con-
figurations are inherited from the same Stage I training run
so that the result is only affected by Stage II training. We
compute the mean squared reconstruction loss and mutual
information gap for the final models in Table 2. By using
the adversarial Stage II classifier and adding the code dis-
tance term, we are able to improve both disentanglement
(MIG) and reconstruction (MSE).

4. Effect of Factor Correlation

In the datasets used for evaluation, the factors are in-
dependent of each other. In particular, in the 3D Shapes
and the 3D Chairs datasets, every combination of labels oc-
curred exactly once. In this section we would like to explore
the behavior of our method when some of the factors are

(a) Floor hue (b) Wall hue

Figure 4: Distribution of test samples in the code space of
the two correlated labeled factors.

correlated. For better control, we construct a dataset where
the correlation is exactly known: in the 3D Shapes dataset,
each of the three color factors has 10 possible values, num-
bered 0 to 9. We take the subset of the dataset consisting of
all images whose floor hue and wall hue differ by 0 or ±1,
modulo 10.

4.1. Correlation Between Two Labeled Factors

The first case is when correlation exists between two of
the labeled factors. The semantics of the labeled factors in
our networks is enforced to strictly follow the semantics of
the labels, so it is expected that our network would behave
in the same way as when the labeled factors did not have
correlation.

We train our model on the correlated subset with object
hue being the unknown factor, so that the two correlated
factors are both labeled. The distribution of test samples in
the two correlated factors is shown in Figure 4. As can be
seen, our network successfully learns to encode floor hue
and wall hue as labeled.

While the behavior of the network remains the same, the
MIG decreases: due to correlation the mutual information
between floor hue and wall hue is now ln 10 − ln 3 instead
of 0, and a perfect set of encoders would produce an MIG
of

1

6

(
2

(
1− ln 10− ln 3

ln 10

)
+ 4

)
≈ 0.8257 (22)

In comparison, our method gives an MIG of 0.8026.

4.2. Correlation Between Labeled and Unknown
Factors

The situation is more complicated when there is corre-
lation between the unlabeled factor and the labeled factors.
Our goal is for the unknown encoder to not encode any in-
formation about the labeled factors, which is to say, the con-
ditional distribution of the unknown encoder, given the la-
beled factors, should be the same regardless of the value of
the labeled factors. We train our model with floor hue being

Figure 5: Distribution of test samples in the code space of
the unknown encoder when the unknown factor and the la-
beled factors are correlated.

the unknown factor. In this case, since for any value of wall
hue there are exactly three possible values of floor hue, it
can be predicted that our unknown encoder should discover
a factor with three discrete values, such that for any wall
hue, each of the three floor hues is encoded as a different
value. Note that this discovered factor is not necessarily the
“hue difference” of the floor and the wall: there is no guar-
antee that the three values of this factor correspond to the
hue difference being −1, 0 and 1 consistently, independent
of other factors. The mapping from hue difference to the
value of the discovered factor can vary according to wall
hue. The only guarantee is that for the same wall hue, dif-
ferent floor hues correspond to different values of the dis-
covered factor.

The distribution of the samples in the unknown encoder’s
code space, colored by floor hue, is shown in Figure 5.
Three clusters can be clearly seen.

In general, we can conclude that if the intended seman-
tics of the unknown factor is correlated to the labeled fac-
tors, then the factor discovered by our method would have
different semantics. This may or may not be a desirable out-
come, but it shows that our method is highly effective in en-
suring the independence between the discovered unknown
factor and the labeled factors.

5. Comparisons
5.1. Visualization

In Figure 3, for each of the methods compared, we plot
the distribution of test samples of the 3D Chairs dataset
in the code space, projected onto the two dimensions hav-
ing the largest mutual information with the rotation label.
In β-VAE [9] and Factor-VAE [10], no clear color pattern
can be observed. In β-TCVAE and Lord [8], samples with
the same rotation are somewhat close together but there is
no meaningful order between different rotations. Pairwise-
VAE [4] and our method can arrange the azimuth angle
correctly into a ring, but the structure is more clear in our
method, and also, we can distinguish two slightly different

(a) β-VAE [9] (b) Factor-VAE [10]

(c) β-TCVAE [5] (d) Pairwise-VAE [4]

(e) Lord [8] (f) Ours

Figure 6: Additional results of manipulation comparison on 3D Chairs by uniformly sampling the latent codes depicting the
azimuth rotation. The leftmost column shows the inputs.

elevation angles, which are not distinguished by any other
method.

5.2. Results

We provide more results of manipulating the latent code
related to azimuth rotations and generate the images using
different methods in Figure 6.

Figure 7: Additional portrait relighting results.

6. Downstream Tasks

6.1. Portrait Relighting

In this task, the labeled factor is lighting, represented by
the coefficients of spherical harmonics up to second-order,
which are 9 real-valued numbers. We show that our disen-
tanglement framework can handle such continuous labels.
More portrait relighting results are shown in Figure 7.

6.2. Anime Style Transfer

Figure 8 and Figure 9 present more results of anime style
transfer generated by fixing either style or content. In Fig-
ure 8, we show the styles of the results are consistently faith-
ful to the input. In Figure 9, we explore the diversity of
styles our network can learn and demonstrate the ability to
generate the same content in different styles where facial
shapes, appearances, and aspect ratios are captured.

6.3. Landmark-Based Face Reenactment

The landmark-based face reenactment can generate the
face motion of one target person from a single image with
another source subject’s facial expressions and head pose
from a driving video. The generated results should pre-
serve the source poses/expressions while matching the tar-
get identity. With only the identity label known, we can
disentangle unknown poses/expressions from identities and
synthesize new landmarks by changing identities in the
source landmarks to the target.

We train the landmark-to-image network on the training
dataset from VoxCeleb2 [6] which is processed by crop-
ping a 256 × 256 face image and extracting its landmarks
from each frame. In total, the training data contains 52, 112
videos for 1, 000 randomly selected subjects. We test on a
video dataset of 8, 000 frames for 80 pairwise subjects (100
frames per video) randomly sampled from the VoxCeleb2
testing data,

Figure 8: Generated samples with fixed style and random content. Left column shows four input examples of two different
artists.

Figure 9: Generated samples with fixed content and random style. The content code is fixed for all results while style codes
randomly sample from the style distribution.

Method ID ↑ Pose ↑ Exp. ↓
X2face [14] 0.635 0.302 0.448

First-order [13] 0.770 0.822 0.274
Ours w/o disentanglement 0.715 0.862 0.208
Ours w/ disentanglement 0.776 0.840 0.243

Table 3: Quantitative comparison of methods for cross-
subject face reenactment on the VoxCeleb2 testing dataset
between our method with and without landmark disentan-
glement, and two one-shot methods [14], and [13]. Note
that our results without disentanglement are generated us-
ing the ground truth landmarks from the driving frame so
their poses/expressions in the results should be the closest
to those in the driving frame, but their identities are very
different from the target person. Our method with disentan-
glement achieves the best in identity preservation and the
second-best in poses/expressions.

We present more qualitative comparison in Figure 10 be-
tween with and without landmark disentanglement and in
Figure 11 against two of the state-of-the-art one-shot face
reenactment methods, i.e. X2face [14] and First-order [13].
Figure 10 compares the results using source landmarks
without disentanglement and synthesized landmarks with
disentanglement and shows that landmark disentanglement
leads to better identity preservation. Figure 11 shows quan-
titative comparisons with two one-shot face reenactment
baselines and demonstrates our method can better general-
ize to unseen subjects with more consistent quality under a
large variety of poses/expressions.

Besides, we conduct a quantitative comparison as shown
in Table 3 to measure the accuracy of disentanglement. We
evaluate the results using three metrics (ID, Pose, and Exp.)
for identity, pose, and expression respectively. ID mea-
sures the identity similarity between the resulting face and
the target person by computing cosine similarity between
their embedding vectors of the face recognition network
VGGFace2 [3]. Pose measures the similarity between the
resulting head pose and the source subject’s pose in the
driving frame by computing cosine similarity between their
head rotations in radians around the X, Y, and Z axes es-
timated by OpenFace [2]. Exp. measures the difference
between the resulting expression and the source expression
in the driving frame by computing the L2 distance of their
intensities of corresponding facial action units detected by
OpenFace. Note that our results generated without dis-
entanglement directly use the landmarks from the driving
frame so their poses/expressions in the results are the closest
to those in the driving frame but their identities mismatch
the target person. In contrast, our method with disentangle-
ment largely increases the identity accuracy while achieving
comparable accuracy in poses/expressions.

Table 4: Quantitative comparison with the state-of-the-art
methods for skeleton disentanglement on Mixamo.

Method MSE ↓ MAE ↓
[15] 0.0131 0.0673
[1] 0.0151 0.0749

Ours 0.0056 0.0498

6.4. Skeleton-Based Body Motion Retargeting

We train our skeleton disentanglement network on the
dataset of Mixamo [11]. It contains synthetic 3D skele-
tons of approximately 800 unique motion sequences each of
36 distinct characters ground truth labels for motion, view,
and pose. We follow the same setting in [15] to use 32 of
these characters with 800 sequences of each one for training
and the rest for testing. There is no overlap in motion se-
quence and character between training and testing. In train-
ing, we project the 3D joint coordinates on-the-fly onto 2D
with viewing angles chosen randomly. The labeled factors
are the identity of the character and the view angle and the
unknown factor is the motion. The network sees only one
frame at a time instead of a motion sequence.

In Table 4, we quantitatively compare with the state-of-
the-art methods (i.e., [15] and [1]), which are task-specific,
focusing on skeleton disentanglement. The method of [15]
is unsupervised while the method of [1] utilizes full super-
vision. We perform evaluations on the same held-out test
set from Mixamo (with ground truth available) using MSE
and MAE as the metrics, reported in the original scale of
the data. Our method, using weak supervision, outperforms
both methods in terms of numerical joint position error but
does not rely on any domain-specific prior knowledge.

Figure 12 shows that we can independently control iden-
tity, view and motion, synthesizing 2D skeletons with novel
identity, view and motion while preserving the remaining
factors unchanged.

Figure 13 shows more results of 2D skeleton-based mo-
tion retargeting. Although driven by different subjects, the
target skeleton identity is completely preserved in the gen-
erated results.

References
[1] Kfir Aberman, Rundi Wu, Dani Lischinski, Baoquan Chen,

and Daniel Cohen-Or. Learning character-agnostic mo-
tion for motion retargeting in 2d. ACM Trans. Graph.,
38(4):75:1–75:14, 2019.

[2] Tadas Baltrusaitis, Amir Zadeh, Yao Chong Lim, and Louis-
Philippe Morency. Openface 2.0: Facial behavior analysis
toolkit. In 13th IEEE International Conference on Automatic
Face & Gesture Recognition, FG 2018, Xi’an, China, May
15-19, 2018, pages 59–66. IEEE Computer Society, 2018.

Source Target w/o Result w/ Result
Disentanglement Disentanglement

Figure 10: Qualitative comparison on face image reenactment between the translation results without (w/o) and with (w/)
facial landmark disentanglement.

Source Target X2face [14] First-order [13] Ours

Figure 11: Qualitative comparison on face image reenactment between our method and face motion transfer networks:
X2face [14], and First-order [13] using images from Voxceleb2 [7] and FaceForensics++ [12].

(a) Identity synthesis with view and motion fixed

(b) View synthesis with identity and motion fixed

(c) Motion synthesis with identity and view fixed

Figure 12: Novel synthesis of identity, view and motion. Left column shows the input and the rest represents the generated
skeletons by individually controlling identity, view and motion while fixing the others.

(a)

(b)

[3] Qiong Cao, Li Shen, Weidi Xie, Omkar M. Parkhi, and An-
drew Zisserman. Vggface2: A dataset for recognising faces
across pose and age. In 13th IEEE International Conference
on Automatic Face & Gesture Recognition, FG 2018, Xi’an,
China, May 15-19, 2018, pages 67–74. IEEE Computer So-
ciety, 2018.

[4] Junxiang Chen and Kayhan Batmanghelich. Weakly su-
pervised disentanglement by pairwise similarities. In AAAI
2020, pages 3495–3502, 2020.

[5] Tian Qi Chen, Xuechen Li, Roger B. Grosse, and David Du-
venaud. Isolating sources of disentanglement in variational
autoencoders. In NeurIPS 2018, pages 2615–2625, 2018.

[6] Joon Son Chung, Arsha Nagrani, and Andrew Zisserman.

Voxceleb2: Deep speaker recognition. In B. Yegnanarayana,
editor, Interspeech 2018, 19th Annual Conference of the In-
ternational Speech Communication Association, Hyderabad,
India, 2-6 September 2018, pages 1086–1090. ISCA, 2018.

[7] Joon Son Chung, Arsha Nagrani, and Andrew Zisserman.
VoxCeleb2: Deep Speaker Recognition. In Interspeech
2018, pages 1086–1090, 2018.

[8] Aviv Gabbay and Yedid Hoshen. Demystifying inter-class
disentanglement. In ICLR 2020, 2020.

[9] Irina Higgins, Loı̈c Matthey, Arka Pal, Christopher Burgess,
Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and
Alexander Lerchner. beta-VAE: Learning Basic Visual Con-
cepts with a Constrained Variational Framework. In ICLR

(c)

(d)

Figure 13: Motion retargeting results from different driving subjects to the same target person. In each case, left column
shows the target person and his skeleton, right columns (from top to bottom) represent input source frames, extracted source
skeletons, transformed skeletons, and generated target frames.

2017, 2017.
[10] Hyunjik Kim and Andriy Mnih. Disentangling by factoris-

ing. In ICML 2018, volume 80, pages 2654–2663, 2018.
[11] Mixamo. Mixamo. https://www.mixamo.com/.
[12] Andreas Rössler, Davide Cozzolino, Luisa Verdoliva, Chris-

tian Riess, Justus Thies, and Matthias Nießner. Faceforen-
sics++: Learning to detect manipulated facial images. In
2019 IEEE/CVF International Conference on Computer Vi-
sion, ICCV 2019, Seoul, Korea (South), October 27 - Novem-

ber 2, 2019, pages 1–11. IEEE, 2019.

[13] Aliaksandr Siarohin, Stéphane Lathuilière, Sergey Tulyakov,
Elisa Ricci, and Nicu Sebe. First order motion model for
image animation. In NeurIPS 2019, pages 7135–7145, 2019.

[14] Olivia Wiles, A. Sophia Koepke, and Andrew Zisserman.
X2face: A network for controlling face generation using
images, audio, and pose codes. In Vittorio Ferrari, Mar-
tial Hebert, Cristian Sminchisescu, and Yair Weiss, editors,
Computer Vision - ECCV 2018 - 15th European Conference,

https://www.mixamo.com/

Munich, Germany, September 8-14, 2018, Proceedings, Part
XIII, volume 11217 of Lecture Notes in Computer Science,
pages 690–706. Springer, 2018.

[15] Zhuoqian Yang, Wentao Zhu, Wayne Wu, Chen Qian, Qiang
Zhou, Bolei Zhou, and Chen Change Loy. TransMoMo:
Invariance-Driven Unsupervised Video Motion Retargeting.
In CVPR 2020, pages 5305–5314, 2020.

