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Abstract

Disentangling data into interpretable and independent
factors is critical for controllable generation tasks. With
the availability of labeled data, supervision can help en-
force the separation of specific factors as expected. How-
ever, it is often expensive or impossible to label every sin-
gle factor to achieve a fully-supervised disentanglement. In
this paper, we adopt a general setting in which all factors
that are hard to label or identify are encapsulated as a sin-
gle unknown factor. Under this setting, we propose a flexi-
ble weakly-supervised multi-factor disentanglement frame-
work that enables multi-conditional generation regarding
both labeled and unknown factors. Specifically, a two-stage
training approach is adopted to first distill the unknown fac-
tor with an effective and robust training method, and then
train the final generator with the proper disentanglement
of all labeled factors utilizing the unknown distillation. To
demonstrate the generalization capacity and scalability of
our method, we evaluate it on multiple benchmark datasets
qualitatively and quantitatively and further apply it to vari-
ous real-world applications on complicated datasets.

1. Introduction
Disentanglement learning is the task of breaking down

the tangled high-dimensional data variation into inter-
pretable factors. In the desired disentangled representation,
each dimension corresponds to a distinct factor of variables,
such that one factor changes, the others remain unaffected
[3]. Disentanglement learning thus enables various down-
stream tasks such as transfer learning and few-shot learning,
as well as challenging controllable image synthesis applica-
tions (e.g. semantic portrait manipulation [45, 14]).

With the availability of fully-labeled data, supervised
disentanglement has seen much progress [28, 37, 15, 1, 14].
However, ground-truth labels are not always accessible,
while even human labeling could be prohibitively expen-
sive or inconsistent. Thus, fully-supervised approaches of-
ten have a hard time generalizing to common scenarios that
labels are only partially available or even entirely miss-

ing. In light of this, unsupervised disentanglement ap-
proaches [10, 19, 26, 48, 41] have been proposed to address
these challenges. However, most of them rely on the strong
assumption that the target data is well-structured enough
to be cleanly decoupled into explanatory and recoverable
factors. And more importantly, there is no guarantee that
these factors could be explicitly controlled with respect to
the true intended semantics in specific manipulation scenar-
ios. Therefore, weakly-supervised disentanglement, a nice
mix of the best of both worlds, has recently become popu-
lar for more flexible learning [28, 44, 8, 16]. Unfortunately,
although state-of-the-art performance is achieved on certain
two-factor class-content disentanglement tasks [8, 16], most
existing methods in this category are still unable to extract
factor-aware latent representation, which is essential for
manipulating individual factors especially when multiple
ones are presented. In conclusion, no solution seems com-
pletely satisfactory yet on multi-factor disentanglement, due
to the limited generalizability and insufficient performance.

In this paper, we propose a weakly-supervised multi-
factor disentanglement learning framework, which handles
arbitrary numbers of factors through explicit and near-
orthogonal latent representation. Given that challenging
factors that are hard to label or interpret exist in most tasks,
the key idea to our approach is a general setting of N -factor
disentanglement withN−1 factors labeled and a single fac-
tor unknown, where the unknown one flexibly encapsulates
task-irrelevant or difficult-to-label factors. We find such a
setting highly effective and practical in real scenarios. Take
face motion retargeting as an example, facial expression
could be a good candidate for the unknown factor since it is
much more difficult to precisely label than others such as the
identity and the pose. Thanks to its flexibility, our method
naturally adapts to various tasks with varying domains (e.g.
cartoon and real photos), data types (e.g. images, skeletons,
and landmarks), integrity (well-structured or in-the-wild),
and label continuity (discrete or continuous).

To this end, our framework consists of two major stages:
1) Unknown Factor Distillation and 2) Multi-Conditional
Generation. Specifically, we extract the unknown factor us-
ing an adversarial training method in the first stage, and then
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embed all labeled factors to the latent space as the second
stage, which are used to condition the final generation. The
core of our method lies in the joint adversarial training of
factor encoders and discriminative classifiers, which explic-
itly disentangles unknown and known factors without intro-
ducing leakage between their disentangled representations.

The performance of our approach is extensively evalu-
ated on several benchmark datasets, both qualitatively and
quantitatively. Furthermore, we demonstrate the general-
ization capacity and practical robustness of the framework
on multiple challenging tasks using complicated real-world
datasets without any additional manual labeling effort.

Our contributions are: 1) A flexible weakly-supervised
disentanglement learning framework that models data as a
combination of labeled/unlabeled factors, which scales well
to different datasets and benefits various challenging tasks;
2) A two-stage training architecture that explicitly learns
disentangled representations for both labeled and unknown
semantic factors, enabling mutual exclusive manipulation in
the dimension of each factor; 3) A set of learning strategies
to improve the effectiveness and robustness of adversarial
training throughout our pipeline, which could potentially
inspire future research; 4) State-of-the-art performance and
wide range of practical uses on multiple challenging tasks
including controllable image generation.

All the codes and pre-trained models of our implementa-
tion will be released to the public.

2. Related Work
Unsupervised Disentanglement has become the research
focus because it does not require the access to the factors
of variation. The pioneering work of InfoGAN [10], an
information-theoretic extension to the Generative Adver-
sarial Network framework [18], learns disentangled repre-
sentations by maximizing the mutual information between
the observations and a subset of latents. Considering its
training instability and reduced diversity, the Variational
Autoencoder (VAE)-based methods [19, 9, 29, 34, 26] are
proposed for better performance and reconstruction qual-
ity by enforcing a factorized aggregated posterior on the la-
tent space. However, these models are built on the assump-
tion that the observations are independent and identically
distributed in the datasets, thus successfully disentangled
models may not be identified without any supervision [33].
Some task-specific unsupervised approaches disentangle
two or more factors and achieve impressive results, such as
image-to-image translation [20, 31, 42] and motion retar-
geting [47, 55]. These methods do learn disentangled rep-
resentations, relying on specific categories [51, 46, 35, 55],
clearly defined domains [20, 31, 42], or well-structured
datasets with certain categories [48, 32]. In contrast, our
method proposes a general framework, adapting to various
tasks, domains, modalities and factor numbers.

Supervised Disentanglement requires strong supervision
on specific factors of the data. These methods train a sub-
set of the representations to match the known labels us-
ing supervised learning [43]. With observed class labels
only available for partial data, [21] and [39] propose semi-
supervised VAE methods that learn disentangled represen-
tation. These supervised methods require large amounts
of supervised data that would be expensive to acquire in
practice. Although some methods can use synthetic data
or data priors to provide full supervision [1, 14, 50], they
are limited to processing domain-specific data such as hu-
man faces/bodies/hairstyles. Comparing to most supervised
methods that only apply to specific tasks, what we propose
is a general approach that applies to various applications.
Weakly-Supervised Disentanglement has been recently
studied to build robust disentangled representations with-
out requiring large amounts of data. Such weak supervi-
sion is provided as either known relations between the fac-
tors in different samples or ground truth labels of a sub-
set of factors. To avoid explicitly labeling, some methods
consider guiding disentanglement by matching pairs of data
that share the same underlying factor [44, 28, 21, 4, 8]. By
observing a subset of the ground truth factors, some meth-
ods perform distribution matching over data and observed
factors and supervision is leveraged in style-content dis-
entanglement with available labels for style only [27, 54,
25, 16]. Some of these methods may achieve state-of-the-
art performance on certain class-content disentanglement
tasks [8, 16], but they cannot ensure factor-aware latent rep-
resentations for manipulating individual factors.

3. Method
We propose a generic framework for weakly-supervised

disentanglement learning and conditional generation. In-
stead of jointly training the whole system altogether, we
take a two-stage approach. In the first stage, excluding all
labeled factors, an encoder is trained to extract disentangled
representation of the unknown factor from the input data.
And in the second stage, with the unknown factor distilled, a
conditional generative adversarial network is trained to em-
bed the labeled data into the latent space, which allows inde-
pendent control over each factor. By isolating the unknown
factor from the labeled ones first, this two-stage training
helps reduce the overall complexity of the task and improve
the effectiveness of labeled factor disentanglement, as will
be elaborated in the Training Strategy part in Stage II.

3.1. Stage I: Unknown Factor Distillation

This stage trains an unknown encoder E that encodes
the unknown factor completely and exclusively. As shown
in Figure 1 (Stage I), it consists of two parallel branches,
taking real labels (i.e., the real branch) and fake labels (i.e.,
the fake branch) of all known factors as input, respectively.
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Figure 1: Illustration of our two-stage training architecture.

Specifically, let there be N factors, with the first N − 1
ones labeled and the last one unlabeled. x is the training
sample, y = {y1, . . . , yN−1} and y′ = {y′1, . . . , y′N−1}
are the associated real labels and fake labels, respectively,
with the fake ones randomly sampled from the set of all
possible labels. E is the aforementioned unknown encoder,
B = {B1, . . . , BN−1} is a set of label embedders, both
output normal distributions as in a VAE. GI is the Stage-
I generator that generates a sample x or x′ for the real or
fake branch, respectively, conditioned on E and B. C =
{C1, . . . , CN−1} is a set of discriminative classifiers that
predicts the probability distribution of each factor from a
generated sample. Both branches share network structures
and weights. The loss functions of the two branches are
summed. For now, we assume discrete labels, and discuss
continuous-valued factors in the supplementary material.
Real branch: The embeddersB map the real labels y to nor-
mal distributions. We sample codes from these distributions
and feed them to the generatorGI, together with the distilled
unknown factor from E, to generate the real sample x.
Fake branch: By replacing the real labels with fake ones
y′i, GI is asked to generate a fake sample x′ whose ground
truth is unknown. The discriminative classifier Ci predicts
the real label from the fake sample, which indicates if any
label information is leaked through E, since only E has the
access to the real labels in x. C are implemented as a single

multi-class classifier that only branches at the last layer, and
are trained with E in an adversarial manner.
Motivation. 1) In the real branch, by enforcing a recon-
struction loss between the generated sample x and the orig-
inal one x, E should include all information not covered by
any labeled factor; 2) In the fake branch, by minimizing the
accuracy of the classifiers C that are trying to predict the
correct labels from the generated fake sample x′, E should
exclude any information associated with the labeled factors
to avoid label leaking.
Training Strategy. As a common problem of adversarial
methods, jointly training the adversarial pair of E and C
could be unstable. To improve the training robustness, we
operateC on samples generated byGI instead of codes sam-
pled from the distributions produced by E (similar to [12]).
This is because, without proper constraints, the distributions
in the code space can fluctuate a lot in attempting to pre-
vent the real labels from being classified. In contrast, with
the reconstruction loss in the sample space, the distributions
of the generated samples are close to the real ones, which
avoids this kind of fluctuation.

The discriminative classifiers C minimize the negative
log-likelihood loss (NLL). Let p be a vector representing
the probability distribution for a particular factor and k be a
class label whose probability is p(k), NLL is defined as:

NLL(p, k) = − ln p(k). (1)

As the adversarial counterpart, the most obvious choice
for the adversarial loss of E is to maximize the NLL loss.
However, since NLL is not bounded when the probability
p(k) is close to zero, E may prefer to focus on scoring very
large NLL values on only a few samples rather than to make
every output code equally unclassifiable. Therefore, instead
of maximizing the NLL loss, we propose to minimize the
weighted negative log-unlikelihood loss (NLU):

NLUq(p, k) = −
1− q(k)

q(k)
ln(1− p(k)), (2)

where q are the reference distributions, which are always
taken to be the actual class distributions in the training set
for our purpose. In the supplementary material, we show
how this definition of NLU loss is derived from the desired
properties that it should be bounded, yield larger gradients
on samples farther from equilibrium, and have the same
equilibrium point as maximizing the NLL loss.
Full Objective. The full training objective on a single sam-
ple for Stage I is formulated as:

(µ, σ) = E(x), e ∼ N (µ,diag(σ)), (3a)
(αi, βi) = Bi(yi), bi ∼ N (αi,diag(βi)), (3b)
(α′i, β

′
i) = Bi(y

′
i), b′i ∼ N (α′i,diag(β

′
i)), (3c)

x = GI(e, b1, . . . , bN−1), (3d)

3
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x′ = GI(e, b
′
1, . . . , b

′
N−1), pi = Ci(e, x

′), (3e)

LC =
∑

i NLL(pi, yi), (3f)

LGEB = Rec(x, x) + λadv1
∑

i NLUq(pi, yi)

+ λKLDKL(N (µ,diag(σ))||N (0, I)) (3g)

+ λKL
∑

iDKL(N (αi,diag(βi))||N (0, I))).

Rec(x, x) is the reconstruction loss function, which is de-
fined with the mean squared error (MSE) in our experi-
ments: Rec(x, x) = ||x − x||2. C are trained in the fake
branch to minimize LC , averaged over all samples. E, B,
and GI jointly minimize LGEB in the real branch.

3.2. Stage II: Multi-Conditional Generation

With the unknown factor distilled in Stage I, this second
stage trains encoders S for labeled factors to extract the dis-
entangled representations from the input samples. The final
multi-conditional generator GΠ accepts conditions for both
labeled and unknown factors, and ensures that varying one
factor would not affect others in the generated output.

In this stage, as shown in Figure 1 (Stage II), the con-
ditions of unknown and labeled factors come from the real
sample x and fake samples {x′1, . . . , x′N−1}, respectively.
The labeled-factor encoders S = {S1, . . . , SN−1} output
the labeled factor codes, while the unknown encoderE, pre-
trained in Stage I, generates the unknown factor code. The
Stage-II generator GΠ generates a sample x conditioned on
both the unknown and labeled factor codes (Eq. 5c). On
x, a set of discriminative classifiers R = {R1, . . . , RN−1}
are trained to enforce the independent controllability of the
labeled factor codes, and the pre-trained E is adopted to
ensure the consistency of the unknown factor. In addition,
a discriminator D is applied to ensure that the generated
sample x matches the distribution of the real data.
Motivation. Trained on random combinations of real/fake
samples, the generator GΠ is asked to synthesis a new sam-
ple with factors conditioned by encodings from different
sources. The classifiers R enforce complete and indepen-
dent conditions on every labeled factor, and the discrimina-
tor D makes the generated sample indistinguishable from
real data in a global manner.
Training Strategy. Most previous class-conditional GANs
differ on how the generated sample is treated by the classi-
fiers. Their classifiers are trained to correctly label the gen-
erated sample [40] or to be uncertain about the task [49].
But we go the opposite way: in addition to the NLL loss
(Eq. 5e) for classifying the training sample x to the cor-
rect labels, our discriminative classifiers R are specifically
trained to not classify the generated sample x correctly, by
adding the unweighted NLU loss:

NLU(p, k) = − ln(1− p(k)). (4)

Its rationale is that a conventional classifier oblivious to the

generated samples tends to only learn what is enough to dis-
tinguish one class from the others, which is insufficient to
define the full characteristics of that class. However, if we
ask the classifier to identify whether a generated sample is
in the wrong class, it would be encouraged to gain a more
complete understanding of that factor, which is critical to
telling apart real and generated samples.
GΠ and S are jointly trained to ensure that the gener-

ated sample x should be classified to the same labels as the
inputs {x′1, . . . , x′N−1} (the NLL term in Eq. 5g).

Meanwhile, to enforce that the unlabeled factor is consis-
tently controlled by the code from E, we minimize the dis-
tance between the encodings of the generated sample x and
the input x, using the fixed E (square error term in Eq. 5g).
This further explains why E must be trained in a separate
stage from the rest of the system: E is used both for provid-
ing the input to the generator and for re-encoding the output
to compare against the input. If E is allowed to be updated
while this distance is being minimized, it could collapse to
a state where it encodes everything to a zero vector.

As for the discriminator D, we use LSGAN loss func-
tions [36] (Eq. 5f and the D term in Eq. 5g).
Full Objective. Similar to Stage I, the full training objec-
tive on a single sample for Stage II is formulated as:

(µ, σ) = E(x), e ∼ N (µ,diag(σ)), (5a)
(α′i, β

′
i) = Si(x

′
i), s′i ∼ N (α′i,diag(β

′
i)), (5b)

x = GΠ(e, s
′
1, . . . , s

′
N−1), (µ, σ) = E(x), (5c)

pi = Ri(x), p′i = Ri(x), (5d)

LR =
∑

i(NLL(pi, yi) + NLU(p′i, y
′
i)), (5e)

LD = (D(x)− 1)2 + (D(x) + 1)2, (5f)

LGS = ||µ− µ||2

+ λadv2(D(x)2 +
∑

i NLL(p
′
i, y
′
i)) (5g)

+ λKL
∑

iDKL(N (α′i,diag(β
′
i))||N (0, I)).

Note that while the N − 1 additional fake samples are in-
volved in every single sample, in practice this can be effi-
ciently done by computing all factor codes for the whole
batch and combine them randomly for generation. Classi-
fication labels are permuted accordingly. The classifiers R
minimize LR, the discriminator D minimizes LD, and the
generator G and encoders S jointly minimize LGS .

3.3. Implementation Details

We do not favor any specific network architecture for
maximum generality. In all our experiments, encoders and
generators consist of 3, 4, or 5 stride-2 convolutions for
datasets with image sizes of 28, 64, or 128, respectively,
followed by 3 fully-connected layers. Discriminators and
classifiers have the same convolutional layers but only one
fully-connected layer. The convolution feature map depth
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Table 1: Unknown consistency ratios on 3D Shapes with
different unknown factors, w/ and w/o distillation.

Unknown Factor w/ Distillation w/o Distillation
Floor hue 100.00% 63.42%
Wall hue 100.00% 55.63%

Object hue 100.00% 68.76%

starts from 32 and doubles after each convolution but does
not exceed 256. Fully-connected layers have 512 features.

4. Experiments
We first empirically study our method, and then perform

qualitative and quantitative evaluations and comparisons on
the benchmark datasets. The ablation analysis of our net-
work design can be found in the supplementary material.

4.1. Datasets and Metrics

Datasets. We conduct evaluation experiments on four
benchmark datasets: MNIST [30], Fashion-MNIST (F-
MNIST) [53], 3D Chairs [2], and 3D Shapes [5]. For
MNIST and F-MNIST, we use the standard training/testing
split. For 3D Chairs and 3D Shapes, we randomly hold out
10% of all images for testing and use the rest for training.
In MNIST and F-MNIST, we take class as the labeled factor
since only it has labels available. In 3D Chairs which con-
tains three factors, i.e. model, elevation, and azimuth, we
combine elevation and azimuth in to a single unknown fac-
tor of rotation. In 3D Shapes which is fully defined by six
labeled factors, i.e. floor hue, wall hue, object hue, scale,
shape, and orientation, we select one or more factors as la-
beled and merge the remaining ones into the unknown factor
to train various models for our empirical study.
Metrics. We evaluate the disentanglement performance by
computing the Mutual Information Gap (MIG) [9] of the
encoders. Since factors may contain more than one dimen-
sion, the mutual information of each factor is defined as the
largest one over all dimensions. Then the MIG is computed
as the gap of mutual information between the top two fac-
tors. Higher MIGs indicate better disentanglement quality.

4.2. Empirical Study

We empirically study how unknown distillation con-
tributes to the disentanglement of labeled factors and en-
ables control over the unknown factor.
Necessity of the Unknown Factor. Without the unknown
distillation, there is no guarantee that the features repre-
sented by the unknown factor remain fixed when altering
any labeled ones. To compare, we modify Stage II by re-
placing the unknown factor code encoded by E with Gaus-
sian noise and removing the feature matching loss ||µ−µ||2
(Eq. 5g), and train three models on 3D Shapes, with each se-

Table 2: Labeled consistency ratios and MIG scores on 3D
Shapes with the unknown factor merged from varying num-
bers of factors. Zero unknown means fully-supervised.

# Unknown Ratio MIG ↑
0 100.00% 0.9501
1 100.00% 0.9555
2 100.00% 0.9733
3 100.00% 0.9718
4 100.00% 0.9393
5 100.00% 0.9868

Table 3: Mean squared error (MSE) and MIG scores on 3D
Shapes with different unknown factor.

Unknown Factor MSE ↓ MIG ↑
Floor hue 0.00049 0.9607
Wall hue 0.00063 0.9825

Object hue 0.00074 0.9766
Scale 0.00062 0.9411
Shape 0.00064 0.9637

Orientation 0.00064 0.9537

lecting floor hue, wall hue, and object hue as the unknown
factor, respectively. We generate images using the same
random code for the unknown factor and independently-
sampled random codes for all labeled factors, and then cal-
culate the ratio of results sharing the same unknown fea-
ture, namely consistency ratio. Due to the simplicity of 3D
Shapes, these three features can be reliably computed by
taking the colors at fixed pixel coordinates. Two colors are
considered the same if their L2 RGB distance is less than
half of the mean distance between two adjacent hue samples
in the dataset. We generate 10,000 images for each network,
and show the results in Table 1. As can be seen, all ratios
reach 100% with distillation, meaning the unknown factor
remains unchanged for all test samples. Note that MIGs
are not measured here because the disentanglement perfor-
mance among labeled factors is generally not affected.
Scope of the Unknown Factor. In our setting, if there
is more than one unknown factor, all these factors will be
treated as a whole without individual controllability. How-
ever, we can still ensure that the unknown factors are iso-
lated from the labeled ones, and the disentanglement per-
formance of the labeled factors will not be influenced. To
verify this, we train six models on 3D Shapes: starting all
factors labeled, we successively merge floor hue, orienta-
tion, wall hue, scale, and shape into the unknown factor,
with object hue being the last labeled factor at the end. We
measure the consistency ratios as introduced in Necessity
of the Unknown Factor and MIG scores on object hue only
in Table 2. Note that all MIG scores are quite close to the
upper bound of 1, suggesting good disentanglement quality.
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(a) MNIST/ class/ style (b) F-MNIST/ class/ style (c) 3D Chairs/ model/ rotation (d) 3D Shapes/ noted/ others

Figure 2: Generated samples on different datasets. The top row and the leftmost column are the input conditions for the
labeled and the unknown factors, respectively, annotated as dataset / labeled / unknown in the sub-captions.

(a) style /class /class (b) ori. /ori. /ori. (c) rot. / rot. / rot.

(d) style / style /class (e) shape/shape/floor (f) rot. /model / rot.

Figure 3: Visualizing the disentanglement with test sam-
ple distributions. The sub-caption of each figure represents:
dataset/ unknown factor/ encoding factor/ coloring factor.

Choice of the Unknown Factor. We also study the ro-
bustness of our method by choosing different factors as the
unknown one on 3D Shapes. The MSE and MIG results,
reflecting the consistent performance of reconstruction and
disentanglement, respectively, are shown in Table 3.

4.3. Results and Visualizations

To demonstrate the quality of our multi-conditional gen-
erator, we plot the generated samples with factors controlled
by random references on the benchmark datasets. As shown
in Figure 2, our method accurately encodes both known (the
top row) and unknown (the leftmost column) factors and
uses them to independently control the generation.

We also illustrate the disentanglement quality by visu-
alizing the test sample distributions in the code spaces in
Figure 3. For each figure, we pick one encoding factor and
one coloring factor from all factors, where both factors may

or may not be the same. To draw each test sample on the
2D visualization, we generate the 2D position with the en-
coding factor and the color with the coloring factor. Specif-
ically, we get its factor code using the encoder correspond-
ing to the encoding factor and project it to 2D by selecting
two dimensions with the largest variance. Then we draw a
point on that 2D projection using the color mapped to its
label of the coloring factor. The indication of good disen-
tanglement is that colors should be clearly separated when
the encoding and coloring factors are identical, but entirely
mixed with no color pattern or bias when they are different.

4.4. Comparisons

We compare our approach against the state-of-the-art,
including unsupervised [19, 26, 9] and weakly-supervised
methods [8, 16]. The weakly-supervised methods are run
under the same setting as ours where only one factor is
labeled for MNIST, F-MNIST, and 3D Chairs. Suggested
hyperparameters are used to train these models: β = 4
for [19]; γ = 10 on MNIST and F-MNIST, and γ = 3.2
on 3D Chairs for [26]; β = 6 for [9]; and β = 10 for [8].

From the results in Table 4, our method achieves sub-
stantially higher MIG scores than other methods on all
datasets. Since the unsupervised methods [19, 26, 9] are
trained without any supervision, comparing with them is
somewhat unfair. Nevertheless, this emphasizes the impor-
tance of supervision in the disentanglement tasks, which is
also reflected by the observation that the weakly-supervised
methods consistently outperform the unsupervised ones.

We show a qualitative comparison in Figure 4 which ro-
tates the 3D Chairs images via traversing the latent code
that depicts the azimuth rotation. The unsupervised meth-
ods [19, 26, 9] can smoothly change the orientation but
fail to preserve the original style (e.g. shape, color, etc.).
Among the weakly-supervised methods, [8] suffers from
over-blurriness, while [16] cannot consistently control the
orientation. Instead, our method is capable of handling var-
ious chair styles and orientations, and achieves better gener-
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Table 4: The MIG scores of different disentanglement
methods computed on the benchmark datasets.

Dataset Unsupervised Weakly-Supervised
[19] [26] [9] [8] [16] Ours

MNIST 0.279 0.071 0.568 0.760 0.582 0.978
F-MNIST 0.105 0.043 0.111 0.630 0.539 0.874
3D Chairs 0.031 0.098 0.115 0.212 0.284 0.404

[19] [26]

[9] [8]

[16] Ours

Figure 4: The rotation manipulation comparison on 3D
Chairs by uniformly sampling the latent codes depicting the
azimuth rotation. The leftmost column shows the inputs.

ation quality with the original styles well preserved. More-
over, both weakly-supervised methods are limited to two-
factor class-content disentanglement, but our approach is a
more flexible multi-factor framework that supports factor-
aware latent representation for each individual factor.

5. Downstream Tasks

We apply our method to various downstream tasks, cov-
ering different data types and integrity. For more results and
comparisons, please refer to the supplementary material.
Portrait Relighting. We train the network on the dataset
combining celebA-HQ [22] and FFHQ [23] by treating the
lighting as the labeled factor and the remaining content as

Figure 5: Portrait relighting. The top row shows various
environment lightings mapped on a sphere. The leftmost
column shows input images, and to the right are the re-lit
results conditioned by the lightings in the same column.

Content

Style

Ours

StarGAN

NeuralStyle

Ours

StarGAN

NeuralStyle

Figure 6: Anime style transfer. Each column is condi-
tioned by the example style at the top row. In each group
with three rows, the leftmost image is the content and the
results are shown to the right. From top to bottom: our
method, StarGAN [11], and Neural Style Transfer [17].

unknown. Here, lighting is represented by second-order
spherical harmonics coefficients for RGB and estimated
with [24, 6]. Figure 5 shows our portrait relighting results.
Anime Style Transfer. We train the network on a custom
dataset of 106, 814 anime portrait images drawn by 1, 139
artists collected online. The labeled factor is the artists’
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Expression

ID & Pose

(a) Fix identity and pose, change facial expression.
         Pose

ID & 
Expression

(b) Fix identity and facial expression, change pose.

Figure 7: Face reenactment with expression/pose con-
trol. In each sub-figure, the leftmost column provides the
identity and the pose/expression, and the top row provides
the expression/pose. The reenactment results are generated
with factors conditioned by these inputs.

identity, which is used as the proxy for style. The unla-
beled factor is interpreted as the content of the subject. Fig-
ure 6 shows our results on transferring style between dif-
ferent anime portrait illustrations, with comparisons to Star-
GAN [11] in multi-domain translation and the original Neu-
ral Style Transfer [17]. Our method achieves better results
with styles more faithful to the examples.
Landmark-Based Face Reenactment. We train our disen-
tanglement network on landmark coordinates detected from
the images. After the new landmarks are synthesized with
our generator, an image translation network [52] is used to
translate the rasterized landmarks to the output face image.
The labeled factors are the identity and the head pose, where
the pose is represented by Euler angles, estimated from the
landmarks. The unlabeled factor is the facial expression.
We train the network on VoxCeleb2 [13]. Figure 7-8 show
our face reenactment results with various controls, includ-
ing editing a single factor (expression/pose) (Figure 7) and
mixing all three factors from different sources (Figure 8).
Skeletion-Based Body Motion Retargeting. We extract
2D joint coordinates from both the driving videos and the
actor images. The motion of the driving skeleton and the
identity of the actor skeleton are combined to synthesize the
retargeted skeleton, where the motion is the unknown factor.

ID

Pose

            Exp

Result

Figure 8: Face reenactment with factors from different
sources. The first three rows provide the identity, pose, and
expression, respectively. The fourth row shows the results.

Figure 9: Body motion retargeting. From top to bottom in
each column: input source frame, extracted source skeleton,
transformed skeleton, and generated frame.

The skeleton is then translated to images using [7]. Figure 9
shows our motion retargeting results on real images trained
on Mixamo [38], which demonstrate visually promising dis-
entanglement between the identity and the motion.

6. Conclusion

We propose a flexible weakly-supervised multi-factor
disentanglement framework combining labeled and un-
known factors. By distilling the unknown factors, we en-
able independent control over each factor in the multi-
conditional generation. Our approach achieves state-of-
the-art performance compared to existing unsupervised and
weakly-supervised disentanglement methods on multiple
benchmark datasets. We further demonstrate its generaliza-
tion capacity through various downstream tasks. Further-
more, as a general framework, it can easily carry over to
other modalities (e.g. audio) and help improve the stability
of other task with our adversarial training strategies.
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itris Samaras, Nikos Paragios, and Iasonas Kokkinos. De-
forming autoencoders: Unsupervised disentangling of shape
and appearance. In Vittorio Ferrari, Martial Hebert, Cris-
tian Sminchisescu, and Yair Weiss, editors, Computer Vision
- ECCV 2018 - 15th European Conference, Munich, Ger-
many, September 8-14, 2018, Proceedings, Part X, volume
11214 of Lecture Notes in Computer Science, pages 664–
680. Springer, 2018. 2
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and Roman Garnett, editors, Advances in Neural Informa-
tion Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, 8-14
December 2019, Vancouver, BC, Canada, pages 7135–7145,
2019. 2

[48] Krishna Kumar Singh, Utkarsh Ojha, and Yong Jae Lee.
Finegan: Unsupervised hierarchical disentanglement for
fine-grained object generation and discovery. In IEEE Con-
ference on Computer Vision and Pattern Recognition, CVPR
2019, Long Beach, CA, USA, June 16-20, 2019, pages 6490–
6499. Computer Vision Foundation / IEEE, 2019. 1, 2

[49] Jost Tobias Springenberg. Unsupervised and semi-
supervised learning with categorical generative adversarial
networks. arXiv preprint arXiv:1511.06390, 2015. 4

[50] Zhentao Tan, Menglei Chai, Dongdong Chen, Jing Liao, Qi
Chu, Lu Yuan, Sergey Tulyakov, and Nenghai Yu. Michi-

gan: multi-input-conditioned hair image generation for por-
trait editing. ACM Trans. Graph., 39(4):95, 2020. 2

[51] Luan Tran, Xi Yin, and Xiaoming Liu. Disentangled repre-
sentation learning GAN for pose-invariant face recognition.
In 2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26,
2017, pages 1283–1292. IEEE Computer Society, 2017. 2

[52] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,
Jan Kautz, and Bryan Catanzaro. High-resolution image syn-
thesis and semantic manipulation with conditional gans. In
IEEE CVPR, 2018. 8

[53] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-
mnist: a novel image dataset for benchmarking machine
learning algorithms. arXiv preprint arXiv:1708.07747, 2017.
5

[54] Jimei Yang, Scott E. Reed, Ming-Hsuan Yang, and Honglak
Lee. Weakly-supervised disentangling with recurrent trans-
formations for 3d view synthesis. In Corinna Cortes, Neil D.
Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman
Garnett, editors, Advances in Neural Information Process-
ing Systems 28: Annual Conference on Neural Information
Processing Systems 2015, December 7-12, 2015, Montreal,
Quebec, Canada, pages 1099–1107, 2015. 2

[55] Zhuoqian Yang, Wentao Zhu, Wayne Wu, Chen Qian, Qiang
Zhou, Bolei Zhou, and Chen Change Loy. Transmomo:
Invariance-driven unsupervised video motion retargeting. In
2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, CVPR 2020, Seattle, WA, USA, June 13-
19, 2020, pages 5305–5314. IEEE, 2020. 2

11


