
Learning Formation of Physically-Based Face Attributes
Supplementary Material

Ruilong Li1,2∗ Karl Bladin1∗ Yajie Zhao1∗ Chinmay Chinara1 Owen Ingraham1

Pengda Xiang1,2 Xinglei Ren1 Pratusha Prasad1 Bipin Kishore1 Jun Xing1 Hao Li 1,2,3

1USC Institute for Creative Technologies 2University of Southern California 3Pinscreen

1. Experiment Details
1.1. Gender Control

Step1. Pre-computing mean gender latent code. First,
we propose a classifier ψ, trained with ground truth data to
classify our input pair (albedo and geometry maps) into two
categories (male and female). Then we randomly sample
Zid ∼ N(µid, σid) to generate 10k sample pairs Gid(Zid)
using our identity network. The classifier separates all the
samples into two groups. Finally, we extract the mean vec-
tor of each category as Zmale and Zfemale using equation
1.
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Where Ω(Zid) is the gender activation function which
converts the outputs of gender classifier ψ into binary values
defined as follows:

Ω(Zid) =

{
1, ψ(Gid(Zid)) <= 0.5

0, ψ(Gid(Zid)) > 0.5
(2)

Where Ω(Zid) = 1 is defined to be female, and
Ω(Zid) = 0 means male. In equation 1, the mean vector
in each category Zmale and Zfemale is computed by sim-
ply averaging the samples where Ω(Z

(i)
id ) equals to 1 and 0

separately.

Step2. Conditioned Generation. Instead of directly us-
ing a randomly sampled Zid ∼ N(µid, σid) as input, we
combine it with the mean gender latent code Zmale and
Zfemale:

Zgender
id = (1−α−β)×Zid+α×Zmale+β×Zfemale (3)
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We can set α = 0.5, β = 0.0 to ensure generated results
are all male, or α = 0.0, β = 0.5 to ensure generated re-
sults are all female. We can also gradually decrease α and
increase β at the same time to interpolate a male generation
into female. An example of this is shown in Fig.9 of the
paper.

1.2. Age Control

The main idea of age control is similar to the gender
control (Sec 1.1) with two main differences: (1) Instead
of a classifer ψ for gender classification, we use a regres-
sor φ to predict the true age (in years). (2) We compute
an average vector for Zold and Zyoung separately using
the method of sampling Zid with φ(Gid(Zid)) > 50 and
φ(Gid(Zid)) < 30. So the final age latent code is repre-
sented as:

Zage
id = (1 − α− β) ×Zid + α×Zold + β ×Zyoung (4)

Figure 9 in the main paper also shows a example of aging
interpolation by gradually increasing α from 0.0 to 0.7, and
decreasing β from 0.7 to 0.0.

1.3. 3D Model Fitting

Given a face scan, or face model, we firstly convert it into
our albedo and geometry map format by fitting a linear face
model followed by Laplacian warping and attribute transfer.
The ground truth latent code of the input is denoted Zid.
Our goal of fitting is to find the latent code Z

′

id that best
approximates Zid while retaining the embodyment of our
model. To achieve this, one can find Z

′

id that minimizes
MSE(Gid(Z

′

id), Gid(Zid)) through gradient descent.
In particular, we first use the Adam optimizer with a con-

stant learningrate = 1.0 to update the input variable Z
′

id,
then we update the variables in the Noise Injection Layers
with learningrate = 0.01 to fit those details. Fig.10 in the
paper shows the geometry of the fitting results.



(a) No extra assets (b) + Lacrimal fluid

(c) + Blend mesh (d) + Occlusion mesh

Figure 1: Closeup of real time rendered eye with our
model’s additional eye geometries successively added. The
eyeball and eyelashes are considered as default eye geome-
try and therefore kept in all subfigures.

1.4. Low-quality Data Enhancement.

In order to enhance the quality of low-resolution data,
so that it can be better utilized, the data point needs to
be encoded as Zid in our latent space. This is done us-
ing our fitting method 1.3. The rest of the high fidelity
assets are generated using our generative pipeline. Unlike
the fitting procedure, we don’t want true-to-groundtruth fit-
ting which would result in a recreation of a low resolution
model. We instead introduce a discriminator loss to balance
the MSE loss. This provides an additional constraint on re-
ality and quality during gradient descent. Empirically we
give a 0.001 weight to the discriminator loss to balance the
MSE loss. We also use the Adam optimizer with a constant
learning − rate = 1.0 for this experiment. The attained
variable Z

′

id is then fed in as the new input, and the process
is iteratively repeated until convergence after about 4000 it-
erations.

2. Real Time Rendering Assets
To demonstrate the use of additional eye rendering assets

(lacrimal fluid, blend mesh, and eye occlusion) available in
our model, we show a real time rendering of a close up of
an eye and its surrounding skin geometry and material from
scan data in Figure 1. The rendering is performed using
Unreal Engine 4. Materials and shaders are adopted from
the Digital Human project [1].
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