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A General Differentiable Mesh Renderer for
Image-based 3D Reasoning

Shichen Liu, Tianye Li, Weikai Chen*, and Hao Li

Abstract—Rendering bridges the gap between 2D vision and 3D scenes by simulating the physical process of image formation. By
inverting such renderer, one can think of a learning approach to infer 3D information from 2D images. However, standard graphics
renderers involve a fundamental step called rasterization, which prevents rendering to be differentiable. Unlike the state-of-the-art
differentiable renderers [25], [35], which only approximate the rendering gradient in the backpropagation, we propose a natually
differentiable rendering framework that is able to (1) directly render colorized mesh using differentiable functions and (2)
back-propagate efficient supervisions to mesh vertices and their attributes from various forms of image representations. The key to our
framework is a novel formulation that views rendering as an aggregation function that fuses the probabilistic contributions of all mesh
triangles with respect to the rendered pixels. Such formulation enables our framework to flow gradients to the occluded and distant
vertices, which cannot be achieved by the previous state-of-the-arts. We show that by using the proposed renderer, one can achieve
significant improvement in 3D unsupervised single-view reconstruction both qualitatively and quantitatively. Experiments also
demonstrate that our approach can handle the challenging tasks in image-based shape fitting, which remain nontrivial to existing

differentiable renders.

Index Terms—YVision and Scene Understanding, Modeling and recovery of physical attributes, Perceptual reasoning; Computer

Graphics, Picture/Image generation

1 INTRODUCTION

NDERSTANDING and reconstructing 3D scenes and struc-
U tures from 2D images has been one of the fundamental goals
in computer vision. The key to image-based 3D reasoning is to find
sufficient supervisions flowing from the pixels to the 3D proper-
ties. To obtain image-to-3D correlations, prior approaches mainly
rely on the matching losses based on 2D key points/contours [4],
[32], [39], [48] or shape/appearance priors [2], [9], [29], [34],
[64]. However, the above approaches are either limited to task-
specific domains or can only provide weak supervision due to the
sparsity of the 2D features. In contrast, as the process of producing
2D images from 3D assets, rendering relates each pixel with the
3D parameters by simulating the physical mechanism of image
formulation. Hence, by inverting a renderer, one can obtain dense
pixel-level supervision for general-purpose 3D reasoning tasks,
which cannot be achieved by conventional approaches.

However, the rendering process is not differentiable in conven-
tional graphics pipelines. In particular, a standard mesh renderer
involves a non-differentiable sampling operation, called raster-
ization, which prevents the gradient to be backpropagated into
the mesh vertices. To achieve differentiable rendering, recent
advances [25], [35] only approximate the backward gradient
with hand-crafted functions while directly employing a standard
graphics renderer in the forward pass. While promising results
have been shown for the task of image-based 3D reconstruction,
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Fig. 1: We propose Soft Rasterizer R (upper), a natually differen-
tiable renderer, which formulates rendering as a differentiable ag-
gregating process A(+) that fuses per-triangle contributions {D; }
in a “soft” probabilistic manner. Our approach attacks the core
problem of differentiating the standard rasterizer, which cannot
propagate gradients from pixels to geometry due to the discrete
sampling operation (below).

they are not able to propagate gradient to distant vertices in all
directions in the image space and fail to handle occlusions. We
show in Section 5.3 that these limitations would cause problematic
situations in image-based shape fitting where the 3D parameters
cannot be efficiently optimized.

In this paper, instead of studying a better form of rendering
gradient, we attack the key problem of differentiating the forward
rendering function. Specifically, we propose a natually differen-
tiable rendering framework that is able to render a colorized mesh
in the forward pass (Figure 1). In addition, our framework can
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Fig. 2: Forward rendering (left): various rendering effects generated by SoftRas by tuning the degree of transparency and blurriness.
Applications based on the backward gradients provided by SoftRas: (1) 3D unsupervised mesh reconstruction from a single input image
(middle) and (2) 3D pose fitting to the target image by flowing gradient to the occluded triangles (right).

consider texture and a variety of 3D properties, including mesh
geometry, vertex attributes (color, normal efc.), camera parameters
and illuminations and is able to propagate efficient gradients
from pixels to mesh vertices and their attributes. Our renderer
can be plugged into either a neural network or a non-learning
optimization framework for 3D reasoning.

The key to our approach is the formulation that views render-
ing as a “soft” probabilistic process. Unlike the popular z-buffer
rendering approach, which only selects the color of the closest
triangle in the viewing direction (Figure 1 below), we apply a
differentiable, order-independent transparency rendering pipeline.
In particular, we propose that all triangles have probabilistic
contributions to each rendered pixel, which can be modeled as
probability maps in the screen space. While conventional OpenGL
rendering pipelines merge shaded fragments by selecting the
closest triangle, we propose a differentiable aggregation function
that fuses the per-triangle color maps based on the probability
maps and the triangles’ relative depths to obtain the final rendering
result (Figure 1 upper). The proposed aggregating mechanism
enables our renderer to propagate gradients to all mesh triangles,
including the occluded ones. In addition, our framework can
pass supervision signals from pixels to distant triangles in the
image space because of its probabilistic formulation. We call our
framework Soft Rasterizer (SoftRas) as it “softens” the discrete
rasterization to enable differentiability.

SoftRas is able to provide high-quality gradients that supervise
a variety of tasks on image-based 3D reasoning. To evaluate the
performance of SoftRas, we show applications in 3D unsupervised
single-view mesh reconstruction and image-based shape fitting
(Figure 2, Section 5.2 and 5.3). In particular, as SoftRas provides
strong error signals to the mesh generator simply based on the
rendering loss, one can achieve mesh reconstruction from a single
image without any 3D supervision. To faithfully texture the mesh,
we further propose to extract representative colors from input im-
age and formulates the color regression as a classification problem.
Regarding the task of image-based shape fitting, we show that our
approach is able to (1) handle occlusions using the aggregating
mechanism that considers the probabilistic contributions of all
triangles; and (2) provide much smoother energy landscape, com-
pared to other differentiable renderers, that avoids local minima by
using the smooth rendering (Figure 2 left). Experimental results
demonstrate that our approach significantly outperforms the state-
of-the-arts both quantitatively and qualitatively. The code of our
paper is available at https://github.com/ShichenLiu/SoftRas.

The contributions of our paper can be summarized as follows:

e We propose a differentiable mesh rendering technique by
introducing smoothing operations in both the spatial and
depth extent to make rasterization differentiable.

e The proposed SoftRas renderer can directly render col-
orized mesh using differentiable functions with the ability
of tuning the sharpness and blurriness of the rendering
results. It enables gradients to be back-propagated from
rendered image pixels to far-range and even occluded
vertices, making challenging image-based 3D reasoning
tasks (see Section 5.3) possible.

e With specific illumination models, e.g. Phong model or
spherical harmonics, our framework is general enough to
reason all 3D properties, e.g. geometry, camera, texture,
material and lighting, by back-propagating supervision
signals from the image. Our approach can also handle
a variety of image representations including silhouette,
shading and color images.

2 RELATED WORK

Differentiable Rendering. To relate the changes in the observed
image with that in the 3D shape manipulation, a number of
existing techniques have utilized the derivatives of rendering [14],
[15], [21], [37]. Recently, Loper and Black [35] introduced an ap-
proximate differentiable renderer which generates derivatives from
projected pixels to the 3D parameters. Kato et al. [25] propose to
approximate the backward gradient of rasterization with a hand-
crafted function to achieve differentiable rendering for triangular
mesh. Rhodin et al. [51] pioneers in leveraging transparency and
spatial smooth for pose estimation in the context of point cloud
rendering. By modeling an object as a collection of translucent
Gaussian blobs whose color, transparency, center and magnitude
can be optimized to fit a given silhouette and appearance, their
approach scales well to a variety of representations, e.g. mesh,
skeleton, etc., for the task of pose estimation. However, due to
the loss of inter-connectivity between the Gaussians, it is non-
trivial for their method to model the fine-scale deformations of
mesh surface. Hence, such limitation hampers it from handling 3D
mesh reconstruction and deformation tasks. Our work pushes the
idea of transparency and spatial smoothing and extend it to mesh
rendering. With the proposed SoftRas framework, we are able to
handle general image-based 3D mesh reasoning tasks without the
aforementioned limitation.

More recently, Li et al. [30] introduce a novel edge sampling
algorithm that is able to compute derivatives of scalar functions
over a ray-traced images. Built on Monte Carlo ray tracing,
they propose new spatial acceleration and importance sampling
solutions to efficiently sample derivatives for arbitrary boundces
of light transport, including the secondary effects such as shadows
or global illumination. While Li et al. [30] focus on images ren-
dered using ray tracing technique, our work aims to differentiate
the rasterization based rendering approach. Loubet et al. [36]
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propose an alternative differentiable path tracer that achieves
much lower variance at the cost of some bias. They avoid the
explicit sampling of discontinuities by applying carefully chosen
changes and re-parameterization of variables that remove the de-
pendence of discontinuities of scene parameters. Nimier-David et
al. [46] introduce Mitsuba 2, a versatile rendering framework that
implements differentiable rendering along with other advanced
rendering features, by leveraging modern C++ and template
metaprogramming that enables retargetable implementation to a
variety of application domains at compile time. To compute the
derivatives of radiometric measures with respect to arbitrary scene
parameterizations, Zhang et al. [63] introduce a new differential
theory of radiative transfer that allows differentiation of radiative
transfer equation while handling a large range of light transport
phenomena. Recent advances in 3D face reconstruction [13],
[52], [53], [54], [55], material inference [10], [33] and other 3D
reconstruction tasks [18], [28], [44], [45], [50], [66] have also
leveraged some other forms of differentiable rendering layers
to obtain gradient flows in the neural networks. However, these
rendering layers are usually designed for special purpose and thus
cannot be generalized to other applications. In this paper, we focus
on a general-purpose differentiable rendering framework that is
able to directly render a given mesh using differentiable functions
instead of only approximating the backward derivatives.

Image-based 3D Reasoning. 2D images are widely used as the
media for reasoning about 3D properties. In particular, image-
based reconstruction has received the most attention. Conventional
approaches mainly leverage the stereo correspondence based on
the multi-view geometry [12], [17] but are restricted to the cover-
age provided by the multiple views. With the availability of large-
scale 3D shape dataset [7], learning-based approaches [16], [19],
[58] are able to consider single or few images thanks to the shape
prior learned from the data. To simplify the learning problem, re-
cent works reconstruct 3D shape via predicting intermediate 2.5D
representations, such as depth map [31], image collections [24],
displacement map [20] or normal map [49], [59]. Pose estimation
is another key task to understanding the visual environment. For
3D rigid pose estimation, while early approaches attempt to cast
it as classification problem [56], recent approaches [26], [61]
can directly regress the 6D pose by using deep neural networks.
Estimating the pose of non-rigid objects, e.g. human face or body,
is more challenging. By detecting the 2D key points, great progress
has been made to estimate the 2D poses [5], [38], [60]. To obtain
3D pose, shape priors [2], [34] have been incorporated to minimize
the shape fitting errors in recent approaches [3], [4], [5], [23].
Our proposed differentiable renderer can provide dense rendering
supervision to 3D properties, benefitting a variety of image-based
3D reasoning tasks.

Rendering transparency and smoothness. Alpha blending [6]
is widely used in computer graphics to create the appearance of
partial or full transparency. Geometric elements are rendered in
separated passes or layers and then composited into a single final
image guided by the alpha channel. To avoid the expensive oper-
ations of alpha blending that require rendering geometry in sorted
order, order-independent transparency (OIT) was later proposed to
sort geometry per-pixel after rasterization and store all fragments
for exact computing. While the spirit of OIT has inspired a number
of subsequent works [11], [22], [40], [43] focusing on avoiding
the cost of storing and sorting primitives or fragments, we focus
on the branch of blended order independent transparency which

leverages a similar idea with our work. Meshkin [42] was the first
to introduce blended OIT by formulating a compositing operator
based on weighted sum. Bavoil and Myers [1] improve Meshkin’s
operator using a better approximation of both coverage and
color with a weighted average operator. Closer to our approach,
McGuire and Bavoil [41] propose weighted blended OIT that
leverages depth-based weights which decrease with the distance
from the camera. Our aggregation function uses a similar idea and
shows that the depth weights play a key role in achieving depth-
based transparency and rendering differentiability. Smoothness-
wise, conservative rasterization technique in graphics introduces
an uncertainty region around the boundary of triangles to handle
rounding errors and other issues that could add uncertainty to
the exact dimensions of the triangle. In contrast, we extend this
concept of uncertainty to handling the non-differentiability of
rasterization. Our probability map can be viewed as a more general
extension of uncertainty which allows the communication between
distant pixels and triangles.

3 SOFT RASTERIZER
3.1 Differentiable Rendering Pipeline

As shown in Figure 3, we consider both extrinsic variables (cam-
era P and lighting conditions L) that define the environmental
settings, and intrinsic properties (triangle meshes IM and per-
vertex appearance A, including color, material efc.) that describe
the model-specific properties. Following the standard rendering
pipeline, one can obtain the mesh normal N, image-space co-
ordinate U and view-dependent depths Z by transforming input
geometry M based on camera P. With specific assumptions of
illumination (e.g. spherical harmonics) and material models (e.g.
Phong model), we can compute color C given { A, N, L}. These
two modules are differentiable with automatic differentiation.
However, the subsequent operations: rasterization and z-buffering,
in the standard graphics pipeline (Figure 3 red blocks) are not
differentiable with respect to U and Z due to the discrete sampling
operations.

Analytically speaking, following a similar spirit of [35], ac-
cording to the computation graph in Figure 3, our gradient from
rendered image I to vertices in mesh M is obtained by

oL _olou oroz  OTLON
oM~ OUOM ' 9ZOM = ONOM’
While 20 9Z DT and I8 can be easily obtained by

inverting the projection matrix and the illumination models, 8%
and g—é do not exist in conventional rendering pipelines. Our

framework introduces an intermediate representation, probability

map D, that factorizes the gradient 8% to %g—D, enabling
the differentiability of %. Further, we obtain % via the

proposed aggregation function. We will detail the gradient g—g
in Section 3.2 and gradient 5% and % in Section 3.3, respectively.

Our differentiable formulation. We take a different perspective
that the rasterization can be viewed as binary masking that is de-
termined by the relative positions between the pixels and triangles,
while z-buffering merges the rasterization results F in a pixel-wise
one-hot manner (only selecting the closest triangle) based on the
relative depths of triangles. The problem is then formulated as
modeling the discrete binary masks and the one-hot merging oper-
ation in a soft and differentiable fashion. We therefore propose two
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Fig. 3: Comparisons between the standard rendering pipeline (upper branch) and our rendering framework (lower branch).

major components that smooth the operations over the spatial and
depth extent, respectively. Spatial-wise, we propose probability
maps D = {D;} that model the probability of each pixel staying
inside a specific triangle f;. Depth-wise, aggregate function A(-)
is introduced to fuse per-triangle color maps based on {Dj} and
the relative depths among triangles. With such formulation, all 3D
properties, e.g. camera, texture, material, lighting and geometry,
could receive gradients from the image.

A

'

A
A

(a) ground truth (b) 0 = 0.003 (¢) o =0.01 (d) o =0.03

Fig. 4: Probability maps of a triangle under Euclidean (upper)
and barycentric (lower) metric. (a) definition of pixel-to-triangle
distance; (b)-(d) probability maps generated with different o.

3.2 Probability Map Computation

We model the influence of triangle f; on image plane by proba-
bility map D;. To estimate the probability of D; at pixel p;, the
function is required to take into account both the relative position
and the distance between p; and D;. To this end, we define D; at
pixel p; as follows:

2,L' .
d(»]))7

g

D;- = sigmoid(é} . 2)
where o is a positive scalar that controls the sharpness of the prob-
ability distribution while 5; is a sign indicator 5; ={+1,if p; €
fi —1,otherwise}. We set o as 1 x 10~* unless otherwise
specified. d(,7) is the closest distance from p; to f;’s edges.
A natural choice for d(i, j) is the Euclidean distance. However,
other metrics, such as barycentric or [; distance, can be used in
our approach.

Intuitively, by using the sigmoid function, Equation 2 normal-
izes the output to (0, 1), which is a faithful continuous approxi-
mation of binary mask with boundary landed on 0.5. In addition,
the sign indicator maps pixels inside and outside f; to the range
of (0.5,1) and (0,0.5) respectively. Figure 4 shows D, of a
triangle with varying o using Euclidean distance. Smaller o leads
to sharper probability distribution while larger o tends to blur the
outcome. This design allows controllable influence for triangles on
image plane. As 0 — 0, the resulting probability map converges
to the exact shape of the triangle, enabling our probability map
computation to be a generalized form of traditional rasterization.

In the following context of this subsection, we will provide
details of the computation of g—g in terms of different metric
choices. In particular, we introduce two candidate metrics for
d(i,7), namely signed Euclidean distance and barycentric met-
ric. To correlate p; with f;, we represent p; using barycentric
coordinate b € R* defined by f;:

b = U7 'p;, 3)
r1 T2 T3 x
where U; = |y1 Y2 y3| andp; = |y
1 1 1 1
i pi

3.2.1 Euclidean Distance

Let t;- € R3 be the barycentric coordinate of the point on the edge
of f; that is closest to p;. The signed Euclidean distance D (¢, 5)
from p; to the edges of f; can be computed as:

. ; ; 2
Dg(i,j) = 6; ||Ut; — pill; )
where 6;- is a sign indicator defined as 6;- = {+1,if p; €
fj; —1, otherwise}.
Then the partial gradient B%Eiéjw) can be obtained via:
IDEg(i,j) ; ' i\ T
o =W )

3.2.2 Barycentric Distance

We define the barycentric metric Dp(4,j) as the minimum of
barycentric coordinate:

Dg(i,j) = min{b}} (6)
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let s = argmin (b;)(k), then the gradient from Dg (%, j) to U
k

can be obtained through:

D (i, j NN
a(tf ‘()zw{l)) -2 () (U;) " (U)) @
J

where k and [ are the indices of U;’s element.

We show the probability maps of a triangle constructed using
Euclidean and barycentric metrics under different parametric set-
tings in Figure 4. In general, Euclidean metric is able to generate
uniformly decaying influence as the distance increases regardless
of the triangle size and shape. Hence, it is more robust to varying
densities of triangular meshes. In contrast, the probabilistic dis-
tribution generated by barycentric metric is more sensitive to the
shape of triangle. However, compared to Euclidean metric which
can only influence the closest edge to the query point, barycentric
metric is able to pass gradient to all the three vertices of the
triangle. We provide more detailed performance comparison of
these two metrics in the ablation study in Section 5.2.4.

3.3 Aggregation Function

For each mesh triangle f;, we define its color map C; at pixel
p; on the image plane by interpolating color using barycen-
tric coordinates. We clip its barycentric coordinates to [0, 1]
and normalize their sum amounts to 1, which prevents negative
barycentric coordinate for color computation. We then propose to
use an aggregation function A(-) to merge color maps {C;} to
obtain rendering output I based on {D,} and the relative depths
{%;}. Inspired by the softmax operator, we define an aggregation
function Ag as follows:

I' = As({Cy}) = > wiCi + wiCy, (8)
j

where Cj, is the background color; the weights {w;} satisfy
>_j wj +w, = 1 and are defined as:

o — _ Djexp(zj/7) .
7 2k Dpexp(z/7) + exp(e/7)
In particular, z; denotes the normalized depth of the 3D point on
fi whose 2D projection is p;. We normalize the depth so that the
closer triangle receives a larger z; by

€))

)

Zfar - ij
2t s T

= 10
I Zfar - Znear7 (10

where Z; denotes the actual clipped depth of f; at p;, while
Znear and Zq, denote the far and near cut-off distances of the
viewing frustum respectively. € is small constant that enables the
background color while y (set as 1 x 10~% unless otherwise
specified) controls the sharpness of the aggregation function.
Note that w; is a function of two major variables: D; and z;.
Specifically, w; assigns higher weight to closer triangles that have
larger z;. As v — 0, the color aggregation function only outputs
the color of nearest triangle, which exactly matches the behavior
of z-buffering. In addition, w; is robust to z-axis translations. D;
modulates the w; along the x, y directions such that the triangles
closer to p; on screen space will receive higher weight. Equation 8
also works for shading images when the intrinsic vertex colors are
set as constant ones.

: oI
The gradient D7

oI

and 5.7 can be obtained as follows:
J

or _w;- i i
oD _ﬁ(Cj_I) 1D
J J
or- wj .
- =2 (Ct-TI" 12
571 7( =1 (12)

Note that we only clamp the barycentric coordinates for color
computation (C' in Equation 8, 11 and 12). The gradients with
respect to spatial location and per-vertex normal still exist, i.e.
through w to D, then to mesh vertices in Equation 11 and
12, where the barycentric weights are not clamped. In addition,
our framework does not provide gradient for UV coordinates.
However, we argue that this gradient may not be necessary as
with given fixed mesh topology and UV mapping, we are able
to optimize the color of UV texture map. Yet, directly deforming
mesh in 3D spatial space has greater capability than deforming UV
coordinates in 2D UV space. Further, since the texture itself might
be changing during the learning process, forcing UV coordinates
to be fixed can achieve more stable training of networks.

We explain details of gradient computation and texturing in

the supplemental materials.
Occupancy Aggregation Function. While Equation 8 works for
colors, it can also be extend to aggregate the alpha channel, i.e.
the silhouette images. However, the continuous interpolation in
Equation 8 may not fit the binary nature of silhouettes. In addition,
the silhouette of object is independent from its color and depth
map. Hence, we propose a dedicated aggregation function A¢ for
silhouettes based on the binary occupancy:

I, = Ao({D;}) = 1 - [[(1 - D))

J

13)

Intuitively, Equation 13 models silhouette as the probability of

having at least one triangle cover the pixel p;. The partial gradient

Il
9Lt can be computed as follows:

BD;.
L, 1-1I.
9 S’L‘l _ sz‘l . (14)
oD: ~ 1-D!

Note that there might exist other forms of occupancy aggre-
gate functions. One alternative option may be using a universal
aggregate function Ay that is implemented as a neural network.
We provide an ablation study on this regard in Section 5.2.4.

3.4 Comparisons with Prior Works

In this section, we compare our approach with the state-of-the-art
rasterization-based differential renderers: OpenDR [35] and
NMR [25], in terms of gradient flows as shown in Figure 5.
In particular, NMR leverages a hand-crafted function to
approximate the gradient for rasterization while directly using
standard graphics renderer in the forward rendering. OpenDR
approximates rendering using a function with respect to vertex
locations, camera parameters and per-vertex brightness. When
computing gradient from image intensity to 2D image coordinates,
OpenDR applies image filtering with limited width to smooth
image and pass gradient to boundary and interior pixels. Due to
the filtering operation, pixels close to or inside the triangle can
receive gradients. But the range is limited to the bandwidth of the
filter, as demonstrated in Figure 5.
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Fig. 5: Comparisons with prior differentiable renderers in terms of
gradient flow.

Gradient from pixels to triangles. Since both OpenDR and
NMR utilize standard graphics renderer in the forward pass, they
have no control over the intermediate rendering process and thus
cannot flow gradient into the triangles that are occluded in the
final rendered image (Figure 5(a) left and middle). In addition, as
their gradients only operate on the image plane, both OpenDR
and NMR are not able to optimize the depth value z of the
triangles. In contrast, our approach has full control on the internal
variables and is able to flow gradients to invisible triangles and
the z coordinates of all triangles through the aggregation function
(Figure 5(a) right).

Screen-space gradient from pixels to vertices. Thanks to
our continuous probabilistic formulation, in our approach, the
gradient from pixel p; in screen space can flow gradient to all
distant vertices (Figure 5(b) right). However, for OpenDR, a
vertex can only receive gradients from neighboring pixels within
a close distance due to the local filtering operation (Figure 5(b)
left). Regarding NMR, there is no gradient defined from the
pixels inside the white regions with respect to the triangle vertices
((Figure 5(b) middle). In contrast, our approach does not have
such issue thanks to our orientation-invariant formulation.

Comparison of time and space complexity. In our implemen-
tation, we do not use PyTorch autograd functions considering
its large memory footage and computation overhead. Instead, we
argue that it is necessary to customize the CUDA kernel functions,
and propose two strategies for optimization: 1) we clip the compu-
tation for pixels that are too far away from the triangle (negligible
influence), hence the footprint of each triangle is not infinite; 2)
we customize our aggregation function implementation so that the
memory consumption for each pixel is O(1). Our implemented
complexity is the same as that of prior works (NMR and OpenDR),
which are O(HW N) and O(HW) respectively. Theoretically, it
is possible to further reduce the time complexity by introducing
more advanced hierarchical data structure. However, due to the
restriction on data management and workflow streaming, it is very
challenging to implement techniques like hierarchical z-buffer in
current deep learning frameworks, making it difficult to reach the
lower bound of theoretical complexity.

tion.

4 IMAGE-BASED 3D REASONING

Our SoftRas can compute gradients to both extrinsic (e.g. camera
and lighting) and intrinsic (e.g. geometry, texture, material, etc.)
properties, enabling a variety of tasks on 3D reasoning. In Sec-
tion 5.2, we evaluate SoftRas for single-view mesh reconstruction
by fixing extrinsic parameters.

4.1 Single-view Mesh Reconstruction

Image-based 3D reconstruction plays a key role in a variety of
tasks in computer vision and computer graphics, such as scene
understanding, VR/AR, autonomous driving, etc. Reconstructing
3D objects either in mesh [47], [58] or voxel [62] representation
from a single RGB image has been actively studied thanks to
the advent of deep learning technologies. While most approaches
on mesh reconstruction rely on supervised learning, methods
working on voxel representation have strived to leverage rendering
loss [8], [28], [57] to mitigate the lack of 3D data. However,
the reconstruction quality of voxel-based approaches are limited
primarily due to the high computational expense and its discrete
nature. Nonetheless, unlike voxels, which can be easily rendered
via differentiable projection, rendering a mesh in a differentiable
fashion is non-trivial as discussed in the previous context. By
introducing a naturally differentiable mesh renderer, SoftRas com-
bines the merits of both worlds — the ability to harness abundant
resources of multi-view images and the high reconstruction quality
of mesh representation.

To demonstrate the effectiveness of soft rasterizer, we fix the
extrinsic variables and evaluate its performance on single-view
3D reconstruction by incorporating it with a mesh generator. The
direct gradient from image pixels to shape and color generators
enables us to achieve 3D unsupervised mesh reconstruction. Our
framework is demonstrated in Figure 6. Given an input image, our
shape and color generators generate a triangle mesh M and its
corresponding colors C', which are then fed into the soft rasterizer.
The SoftRas layer renders both the silhouette /5 and color image
I. and provide rendering-based error signal by comparing with
the ground truths. Inspired by the latest advances in mesh learning
[25], [58], we leverage a similar idea of synthesizing 3D model
by deforming a template mesh. To validate the performance of
soft rasterizer, the shape generator employ an encoder-decoder
architecture identical to that of [25], [62]. The details of the shape
and generators are described in the supplemental materials.

Losses. The reconstruction networks are supervised by three
losses: silhouette loss L, color loss L. and geometry loss
Ly. Let Iy and I, denote the predicted and the ground-truth

silhouette respectively. The silhouette loss is defined as £, =
_ _ ||15®{5||1

1 1:®1s—1:®1]1 . .

and sum operators respectively. The color loss is measured as the

l1 norm between the rendered and input image: L. = ||f e—1Icl)h-

, where ® and @ are the element-wise product
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Fig. 7: Network structure for color reconstruction.

To achieve appealing visual quality, we further impose a geometry
loss L4 that regularizes the Laplacian of both shape and color
predictions. The final loss is a weighted sum of the three losses:

L=Ls+ Mo+ ply. (15)

4.1.1 Color Reconstruction

The recent advances in novel view synthesis [65] has demonstrated
that instead of learning to synthesize pixels from scratch, learning
to copy from the input image can achieve results with even higher
fidelity. Though directly regressing colors is conceptually simpler,
training a reliable regression model is inherently challenging and
prone to over-fitting due to the difficulty of predicting a continuous
variable lying in a high-dimensional space. Hence, we propose
to formulate color reconstruction as a classification problem that
learns to reuse the pixel colors in the input image for each
sampling point. Let N, denote the number of sampling points
on M and H,W be the height and width of the input image
respectively. However, the computational cost of a naive color
selection approach is prohibitive, i.e. O(HW N..). To address this
challenge, we propose to colorize mesh using a color palette, as
shown in Figure 7. Specifically, after passing input image to a
neural network, the extracted features are fed into (1) a sampling
network that samples the representative colors for building the
palette; and (2) a selection network that combines colors from
the palette for texturing the sampling points. The color prediction
is obtained by multiplying the color selections with the learned
color palette. Our approach reduces the computation complexity
to O(N,(HW + N.)), where N, is the size of color palette.
With a proper setting of IN,,, one can significantly reduce the
computational cost while achieving sharp and accurate color
recovery.

4.2

Image-based shape fitting has a fundamental impact in various
tasks, such as pose estimation, shape alignment, model-based
reconstruction, efc. Yet without direct correlation between im-
age and 3D parameters, conventional approaches have to rely
on coarse correspondences, e.g. 2D joints [4] or feature points
[48], to obtain supervision signals for optimization. In contrast,
SoftRas can directly back-propagate pixel-level errors to 3D
properties, enabling dense image-to-3D correspondence for high-
quality shape fitting. However, a differentiable renderer has to
resolve two challenges in order to be readily applicable. (1)
occlusion awareness: the occluded portion of 3D model should
be able to receive gradients in order to handle large pose changes.
(2) far-range impact: the loss at a pixel should have influence
on distant mesh vertices, which is critical to dealing with local
minima during optimization. While prior differentiable renderers
[25], [35] fail to satisfy these two criteria, our approach handles
these challenges simultaneously. (1) Our aggregate function fuses
the probability maps from all triangles, enabling the gradients to

Image-based Shape Fitting

be flowed to all vertices including the occluded ones. (2) Our
soft approximation based on probability distribution allows the
gradient to be propagated to the far end while the size of receptive
field can be well controlled (Figure 4). To this end, our approach
can faithfully solve the image-based shape fitting problem by
minimizing the following energy objective:

argmin || R(M (p, 6,1)) — L ||,

p,0,t

(16)

where R(-) is the rendering function that generates a rendered
image I from mesh M, which is parametrized by its pose 6, trans-
lation ¢ and non-rigid deformation parameters p. The difference
between I and the target image [; provides strong supervision to
solve the unknowns {p, 6,t}.

5 EXPERIMENTS
5.1 Forward Rendering Results

Our proposed SoftRas can directly render a given mesh using
differentiable functions, while previous rasterization-based differ-
entiable renderers [25], [35] have to rely the off-the-shelf renders
for forward rendering. In addition, compared to standard graphics
renderer, SoftRas can achieve different rendering effects in a
continuous manner thanks to its probabilistic formulation.

By increasing o, the key parameter that controls the sharpness
of the screen-space probability distribution, we are able to generate
more blurry rendering results. Furthermore, with increased -,
one can assign more weights to the triangles on the far end,
naturally achieving more transparency in the rendered image. We
demonstrate rendering effects in the supplemental materials. We
will show in Section 5.3 that the blurring and transparent effects
are the key to reshaping the energy landscape in order to avoid
local minima.

5.2 Single-view Mesh Reconstruction
5.2.1 Experimental Setup

Datasets and Evaluation Metrics. We use the dataset provided by
[25], which contains 13 categories of objects from ShapeNet [7].
Each object is rendered in 24 different views with image
resolution of 64 x 64. For fair comparison, we employ the same
train/validate/test split on the same dataset as in [25], [62]. For
quantitative evaluation, we adopt the standard reconstruction
metric, 3D intersection over union (IoU), to compare with
baseline methods. Specifically, we voxelize our mesh to 32 x 32
x 32 and compare it with the ground truth.

Implementation Details. We use the same structure as [25], [62]
for mesh generation. Our network is optimized using Adam [27]
with o« = 1 x 1074, 81 = 0.9 and B = 0.999. The training
of our model takes 12 hours per category on a single NVIDIA
1080Ti GPU. Specifically, we set A = 1 and 1z = 1 x 10~3 across
all experiments unless otherwise specified. We train the network
with multi-view images of batch size 64 and implement it using
PyTorch. The template mesh used in single-view reconstruction
has 642 vertices and 1280 triangles. We use Phong model with 0.5
ambient rate rate and 0.5 diffusive rate. We use intrinsic colors for
materials where ambient reflection rate is 1.0 and diffuse reflection
rate is 1.0. Note that we do not use the AutoGrad function provided
by PyTorch. The practical problem of PyTorch AutoGrad function
is that it explicitly stores all the intermediate variables in CUDA
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Fig. 8: 3D mesh reconstruction from a single image. From left to right, we show input image, ground truth, the results of our method
(SoftRas), Neural Mesh Renderer [25] and Pixel2mesh [58] — all visualized from 2 different views. Along with the results, we also
visualize mesh-to-scan distances measured from reconstructed mesh to ground truth.

the memory. This leads to a prohibitive complexity of O(HW N),
where H, W are the image height and width, respectively; NV is
number of triangles. Instead, we implement customized CUDA
kernel functions that reduce the memory complexity to O(HW)
by aggregating all triangles in a single pixel on-the-fly. The
gradient is crucial to implement these kernels. Therefore, we
provide the details of all the gradients in Section 3.

5.2.2 Qualitative Results

Comparisons with the state-of-the-arts. We compare the
qualitative results of our approach with that of the state-of-the-art
supervised [58] and 3D unsupervised [25] mesh reconstruction
approaches in Figure 8. Though NMR [25] can recover the rough
shape, the mesh surface is discontinuous and suffers from a
considerable amount of self intersections. In contrast, our method
can faithfully reconstruct fine details of the object, such as the
airplane tail and the rifle barrel, while ensuring smoothness
of the surface. Though trained without 3D supervision, our
approach achieves results on par with the supervised method
Pixel2Mesh [58]. In some cases, our approach can generate even
more appealing details than that of [58], e.g. the bench legs, the
airplane engine and the side of the car. Mesh-to-scan distance
visualization also shows our results achieve much higher accuracy
than [25] and comparable accuracy with that of [58].

Color Reconstruction. Our method is able to faithfully recover
the mesh color based on the input image. Figure 9 presents the
colorized reconstruction from a single image and the learned
color palettes. Though the resolution of the input image is rather
low (64 x 64), our approach is still able to achieve sharp color
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Fig. 9: Results of colorized mesh reconstruction. The learned
principal colors and their usage histogram are visualize on the
right.

recovery and accurately restore the fine details, e.g. the subtle
color transition on the body of airplane and the shadow on the
phone screen.

Single-view Reconstruction from Real Images. We further
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Category Airplane  Bench  Dresser Car Chair  Display = Lamp  Speaker Rifle Sofa Table Phone  Vessel Mean
retrieval [62] 0.5564 0.4875 05713  0.6519 0.3512  0.3958  0.2905  0.4600 05133  0.5314 0.3097 0.6696 0.4078  0.4766
voxel [62] 0.5556 0.4924  0.6823  0.7123 04494  0.5395 04223 05868  0.5987 0.6221 0.4938 0.7504  0.5507 0.5736
NMR [25] 0.6172 0.4998  0.7143  0.7095 0.4990 0.5831 04126 0.6536  0.6322 0.6735 0.4829 0.7777 0.5645 0.6015
Ours (sil.) 0.6419 0.5080  0.7116  0.7697 0.5270  0.6156  0.4628  0.6654  0.6811 0.6878  0.4487 0.7895 0.5953  0.6234
Ours (full) 0.6670 0.5429  0.7382  0.7876  0.5470  0.6298 0.4580  0.6807 0.6702 0.7220 0.5325 0.8127 0.6145 0.6464

TABLE 1: Comparison of mean IoU with other 3D unsupervised reconstruction methods on 13 categories of ShapeNet datasets.

Lf"""

Input image Reconstructed mesh Input image Reconstructed mesh

Fig. 10: Single-view reconstruction results on real images.

evaluate our approach on real images. As demonstrated in
Figure 10, though only trained on synthetic data, our model
generalizes well to real images and novel views with faithful
reconstructions and fine-scale details, e.g. the tail fins of the
fighter aircraft and thin structures in the rifle and table legs.

5.2.3 Quantitative Evaluations

We show the comparisons on 3D IoU score with the state-of-the-
art approaches in Table 1. We test our approach under two settings:
one trained with silhouette loss only (sil.) and the other with
both silhouette and shading supervisions (full). Our approach has
significantly outperformed all the other 3D unsupervised methods
on all categories. In addition, the mean score of our best setting has
surpassed the state-of-the-art NMR [25] by more than 4.5 points.
As we use the identical mesh generator and same training settings
with [25], it indicates that it is the proposed SoftRas renderer that
leads to the superior performance.

SoftRas settings Liap | mloU (%)
distance aggregate aggregate

garee func.

func. func. (@) (color)
Barycentric Ao - 60.8
Euclidean Ao - 62.0
Euclidean Ao - v 62.4
Euclidean An - v 63.2
Euclidean Ao Asg v 64.6

TABLE 2: Ablation study of the regularizer and various forms of
distance and aggregate functions. Ay is the aggregation function
implemented as a neural network. Ag and Ao are defined in
Equation 8 and 13 respectively.

5.2.4 Ablation Study

Loss Terms and Alternative Functions. In Table 2, we investi-
gate the impact of Laplacian regularizer and various forms of the
distance function (Section 3.2) and the aggregate function. As the
RGB color channel and the o channel (silhouette) have different
candidate aggregate functions, we separate their lists in Table 2.
First, by adding Laplacian constraint, our performance is increased
by 0.4 point (62.4 v.s. 62.0). In contrast, NMR [25] has reported a
negative effect of geometry regularizer on its quantitative results.
The performance drop may be due to the fact that the ad-hoc

gradient is not compatible with the regularizer. It is optional to
have color supervision on the mesh generation. However, we show
that adding a color loss can significantly improve the performance
(64.6 v.s. 62.4) as more information is leveraged for reducing
the ambiguity of using silhouette loss only. In addition, we also
show that Euclidean metric usually outperforms the barycentric
distance while the aggregate function based on neural network
Ap performs slightly better than the non-parametric counterpart
Ao at the cost of more computations.

5.3 Image-based Shape Fitting

Rigid Pose Fitting. We compare our approach with NMR in the
task of rigid pose fitting. In particular, given a colorized cube
and a target image, the pose of the cube needs to be optimized
so that its rendered result matches the target image. Despite
the simple geometry, the discontinuity of face colors, the non-
linearity of rotation and the large occlusions make it particularly
difficult to optimize. As shown in Figure 11, NMR is stuck in a
local minimum while our approach succeeds to obtain the correct
pose. The key is that our method produces smooth and partially
transparent renderings which “soften” the loss landscape. Such
smoothness can be controlled by ¢ and 7, which allows us to
avoid the local minimum. We also demonstrate the intermediate
process of how the proposed SoftRas renderer managed to fit the
color cube to the target image in Figure 12. By rendering the cube
with stronger blurring at the earlier stage, our approach is able to
avoid local minima, and gradually reduce the rendering loss until
an accurate pose can be fitted.

Further, we evaluate the rotation estimation accuracy on
synthetic data given 100 randomly sampled initializations and
targets. We compare methods w/ and w/o scheduling schemes,
and summarize mean relative angle error in Table 3. Without
optimization scheduling, our method outperforms the best baseline
by 10.60°, demonstrating the effectiveness of the gradient flows
provided by our method and the benefit of handling largely
occluded triangles. Scheduling is a commonly used technique
for solving non-linear optimization problems. For other methods,
we solve with multi-resolution images in 5 levels; while for our
method, we set schedules to decay o and v in 5 steps. Please
refer to the supplemental materials for details of scheduling. While
scheduling improves all methods, our approach still achieves better
accuracy than the best baseline by 14.99°, indicating our consistent
superiority.

Non-rigid Shape Fitting. In Figure 13, we show that SoftRas
can provide stronger supervision for non-rigid shape fitting even
in the presence of part occlusions. We optimize the human body
parametrized by SMPL model [34]. As the right hand (textured
as red) is completely occluded in the initial view, it is extremely
challenging to fit the body pose to the target image. To obtain
correct parameters, the optimization should be able to (1) consider
the impact of the occluded part on the rendered image and

*The expectation of uniform-sampled SO3 rotation angle is 7/2 + 2/7
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Fig. 11: Visualization of loss function landscapes of NMR and
SoftRas for pose optimization given target image (a) and initializa-
tion (f). SoftRas achieves global minimum (b) with loss landscape
(g). NMR is stuck in local minimum (c) with loss landscape
(h). At this local minimum, SoftRas produces the smooth and
partially transparent rendering (d)(e), which smoothens the loss
landscape (i)(j) with larger o and <, and consequently leads to
better minimum.

SoftRas
Rendering

Difference

Iter 1 Iter 10 Iter 20 Iter 50 Iter 100 Iter 200

Fig. 12: Intermediate process of fitting a color cube (second
row) to a target pose shown in the input image (first row). The
smoothened rendering (third row) that is used to escape local
minimum, as well as the colorized fitting errors (fourth row), are
also demonstrated.

(2) back-propagate the error signals to the occluded vertices.
NMR [25] fails to move the hand to the right position due to
its incapability to handle occlusions. In comparison, our approach
can faithfully complete the task as our probabilistic formulation
and aggregating mechanism can take all triangles into account
while being able to optimize the z coordinates (depth) of the mesh
vertices. In the supplemental materials, we further compare the
intermediate fitting processes of NMR [25] and SoftRas.

NMR fails to provide efficient signal to advance the optimiza-
tion of the hand pose. In contrast, our approach is able to obtain

Method w/o scheduling w/ scheduling
random guess 126.48°* 126.48°
NMR [25] 93.40° 80.94°
Li et al. [30] 95.02° 78.56°
SoftRas 82.80° 63.57°

TABLE 3: Comparison of cube rotation estimation error with
NMR, measured in mean relative angular error.

Optimized image Results (NMR)
(NMR)

’.@ |

Optimized image
(SoftRas) Results (SoftRas)

Initialization Target image

Target Target image

Fig. 13: Results for optimizing human pose given single image.

the correct pose within 320 iterations thanks to the occlusion-
aware technique. We wish to emphasize that a proper handling of
transparency is the key to passing gradient to occluded vertices.
As Rhodin et al. [51] share the similar idea of viewing points
as Gaussian blobs with tunable visibility, their method is also
able to handle pose estimation even in the presence of occlusion.
However, it is not trivial to approximate an arbitrary mesh using
a large number of small Gaussians and accurately produce the
fine-scale mesh deformations using this approach.

Ours

MoFA

Ours

MoFA

Ours

MoFA

Reconstruction Skin reflectance llumination

Input image

Geometry

Fig. 14: Results for optimizing facial identity, expression, skin
reflectance, lighting and rigid pose given single 2D image along

with 2D landmarks.
Face Reconstruction. To demonstrate SoftRas is able to provide

efficient gradients for multiple properties in inverse rendering
problem, we show further experiments to fit face shape, expres-
sion, skin reflectance, lighting and rigid pose. Given a single

0162-8828 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Southern California. Downloaded on August 10,2020 at 18:04:22 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.3007759, IEEE

Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, JANUARY 2019 11

2D image and facial landmarks, we optimize the coefficients of
shape, expression and skin reflectance model that is similar to
the one used in MoFA [54], along with lighting modeled by
spherical harmonics and rigid pose parameters. The optimization
is scheduled in two stages: (1) fitting to 2D landmarks by solving
for shape, expression and rigid pose; (2) fitting to photometric loss
and 2D landmarks by solving for all parameters (lowering learning
rate for rigid pose). We show results in comparison to [54] in
Figure 14. We can see our method is able to achieve comparable
or better results compare to [54]. We show more results on single-
view hand fitting and analysis on smoothing in the supplemental
materials.

6 CONCLUSIONS AND DISCUSSIONS

In this paper, we have presented a truly differentiable rendering
framework (SoftRas) that is able to directly render a given mesh in
a fully differentiable manner. SoftRas can consider both extrinsic
and intrinsic variables in a unified rendering framework and
generate efficient gradients flowing from pixels to mesh vertices
and their attributes (color, normal, efc.). We achieve this goal
by re-formulating the discrete operations including rasterization
and z-buffering as differentiable probabilistic processes. Such
nevel formulation enables our renderer to flow gradients to un-
seen vertices and optimize the 2z coordinates of mesh triangles,
leading to significant improvements in the tasks of single-view
mesh reconstruction and image-based shape fitting. However, our
approach, in current form, cannot handle shadows and topology
changes, which are worth investigation in the future. In addition,
our approach do not provide gradients to the UV coordinates.
However, given a fixed UV mapping, we are able to pass gradient
to the colors in texture map. It would be interesting to explore
simultaneous optimization of UV mapping and texture map in the
future work.
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