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Abstract
We present a system for recording a live dynamic facial performance, capturing highly detailed geometry and
spatially varying diffuse and specular reflectance information for each frame of the performance. The result is
a reproduction of the performance that can be rendered from novel viewpoints and novel lighting conditions,
achieving photorealistic integration into any virtual environment. Dynamic performances are captured directly,
without the need for any template geometry or static geometry scans, and processing is completely automatic,
requiring no human input or guidance. Our key contributions are a heuristic for estimating facial reflectance
information from gradient illumination photographs, and a geometry optimization framework that maximizes a
principled likelihood function combining multi-view stereo correspondence and photometric stereo, using multi-
resolution belief propagation. The output of our system is a sequence of geometries and reflectance maps, suitable
for rendering in off-the-shelf software. We show results from our system rendered under novel viewpoints and
lighting conditions, and validate our results by demonstrating a close match to ground truth photographs.

Categories and Subject Descriptors (according to ACM CCS): I.4.8 [Image Processing and Computer Vision]: Scene
Analysis—Stereo

1. Introduction

Photorealistic digital faces are becoming increasingly com-
mon in entertainment media, due to the compelling story-
telling they enable. Producing a believable performance of
a fully digital human face, once impossible, is now achiev-
able through significant artistic and technical effort. Major
milestones in digital faces include the Universal Capture
method used in The Matrix Reloaded [BPL∗03], and the fa-
cial modeling and animation techniques used in The Curi-
ous Case of Benjamin Button, similar to The Digital Emily
project [ARL∗09]. In this work, we focus on the task of
capturing a comprehensive digital version of an actor’s live
facial performance, supporting both novel viewpoints and
novel illumination. Applications include face replacement,
digital stunt doubles, and integration into virtual sets. We
do not consider temporal correspondence or editing the cap-
tured performance, which we believe is a research topic in
its own right, possibly using a captured performance as in-
put. A plethora of facial animation techniques has been pro-
posed over the years, many with the goal of comprehensive
capture [GGW∗98, BPL∗03, ZSCS04, HWT∗04, WGT∗05,
BLB∗08, MJH∗08, ARL∗09, WGP∗10, BHPS10]. The qual-

ity of performance capture systems varies dramatically, as
does the human effort required to process or use the data
after it has been recorded. The highest quality results have
resulted from significant human effort, which is out of reach
for smaller entities. We propose to raise the bar to consider
the following five criteria as essential for a comprehensive
facial performance capture system: 1. Dynamic capture.
The system must record an actor’s performance in real time.
2. Full facial coverage. The captured geometry must cover
the entire face, with some freedom of movement allowed for
the actor’s head. 3. Detailed geometry. The captured geom-
etry must be detailed enough to faithfully reproduce occlu-
sion and self shadowing effects when rendered. 4. Detailed
reflectance. The captured reflectance information must be
detailed enough to allow photorealistic rendering under any
lighting condition, including global illumination effects in-
volving nearby objects. 5. Automatic processing. After a
performance is recorded, the data must be processed auto-
matically, requiring no additional human input or guidance.

We evaluate previous work related to performance cap-
ture, noting several approaches that do not meet the five cri-
teria. We then propose a system that aims to meet the five
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Figure 1: Overview of our system.

criteria better than previous work. Figure 1 illustrates an
overview of our system, which works as follows: We capture
an actor’s performance under active gradient illumination
using multiple cameras. We then estimate the reflectance
function at each pixel in each camera view. Next, we esti-
mate geometry from the point of view of each camera, opti-
mizing with respect to the other views. Finally, we merge the
estimates into a single geometry with reflectance maps. This
process is repeated for every frame in the performance. We
demonstrate our system on a live facial performance, ren-
dered under novel viewpoints and lighting conditions, and
conclude with a discussion and directions for future work.

2. Related Work

Computer vision and graphics employ a vast toolbox of
3D measurement techniques which includes passive stereo
matching, structured light scanning, photometric stereo al-
gorithms, and shape template methods. Different techniques
have different pros and cons, which we evaluate here keep-
ing in mind the five criteria for comprehensive facial perfor-
mance capture we identified in section 1.

Passive stereo matching. The determination of shape
from the stereo correspondence between two images is a
well-studied topic; a taxonomy of stereo correspondence ap-
proaches is presented in [SS02]. The principal challenges
faced by these methods include performance, robust deter-
mination of matches near occlusions, detection of matches
in the absence of significant texture, and enforcement of
smoothness constraints without biasing the recovered cor-
respondences. Some recent stereo techniques which specif-
ically address some of these problems include [SLKS05],
which performs symmetric stereo with occlusion handling,
[WTRF09], which uses second-order smoothness priors to
achieve a more consistent surface, [SZJ09], which uses non-
parametric smoothness priors, and most recently [BBB∗10],
which uses anisotropic second-order smoothness priors to
avoid smoothing over depth discontinuities. Many tech-
niques find correspondences between multiple (more than
two) views of a scene to increase the quality of the matches.
[SCD∗06] compares many multi-view stereo algorithms
over a collection of benchmark datasets and [GSC∗07]
shows impressive recent results for community photo col-
lections. Like [GSC∗07], [FP09] takes advantage of recent

results in automatic structure-from-motion techniques to de-
termine camera positions automatically. Having multiple
views improves the likelihood that accurate matches can be
found, but it does not dramatically improve the precision
of those matches, which remain difficult to resolve at sub-
pixel precision. Even the visually pleasing surface details
achieved by [BBB∗10] are largely cosmetic, as they are hal-
lucinated to match the high spatial frequency statistics of
the source photographs, but are not metrically accurate. In
terms of comprehensive facial performance capture, passive
stereo matching easily meets the dynamic capture, full facial
coverage, and automatic processing criteria. It also arguably
meets the detailed geometry criterion, thanks to the most re-
cent advances. Indeed, if geometry and a simple color map
are the only requirements for an application, then single-shot
passive stereo methods are likely sufficient. However, pas-
sive stereo matching cannot provide the detailed reflectance
information required for comprehensive facial performance
capture, nor does it strive to do so. High resolution tex-
tures may be captured (as in [BHPS10]), but dependencies
on view and lighting direction are completely ignored. On
the other hand, passive stereo matching may coexist with
many reflectance capture methods, so it is a good candidate
for inclusion as a component in our system.

Active stereo. Depth may be determined by triangulating
patterns of light projected onto a scene, instead of relying on
the inherent texture of surfaces. Noise patterns may be pro-
jected to provide additional texture for passive stereo match-
ing, though for high resolution capture of faces the advan-
tage over [BBB∗10] is unclear. [ZRY06] captures real-time
face models using repeated sequences of codified structured
light patterns. Despite compensating for subject motion, the
authors note significant errors when the subject is speaking.
Also, this approach has not been shown to achieve full fa-
cial coverage. For applications with little head motion, such
systems may be sufficient, but comprehensive facial perfor-
mance capture requires more freedom of movement.

Photometric stereo. Some geometric information (i.e.
surface normals) can be inferred from measurements of a
surface’s reflectance function. Dense reflectance measure-
ment [DHT∗00,WMP∗06] provides excellent reflectance in-
formation, but capture times are too high to be practical
for dynamic scenes. Reducing the resolution of the mea-
surement allows these techniques to be extended to dy-
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namic scenes [HWT∗04], but still requires a large number of
photographs. Photometric stereo using three colored lights
enables dynamic capture [Woo78, KHE10, HV10], but in-
hibits good reflectance capture and restricts the placement
of cameras. Photometric stereo using gradient illumination
encodes first order reflectance information, which enables
recovery of realistic reflectance and surface normals when
combined with polarimetry [MHP∗07] or example-based
analysis [CGD09], and can robustly handle dynamic perfor-
mances [WGP∗10]. Of these methods, gradient illumination
stands out as an efficient and robust method for capturing
detailed reflectance information without violating any of the
criteria for comprehensive facial performance capture.

Shape template methods. Morphable models [BV99] al-
low an approximate face shape to be fitted to as few as
one photograph, and have been applied towards facial re-
flectance estimation [FBLS05], but are too generic to re-
cover highly detailed geometry and reflectance for a dy-
namic performance. For higher fidelity reconstruction of an
individual, many works capture a high resolution static scan
of the performer as a geometry template, and then track
the template onto lower resolution dynamic data using op-
tical flow techniques [BPL∗03] or motion tracking mark-
ers [GGW∗98,HWT∗04,BLB∗08]. Great results may be ob-
tained (examples include The Matrix Reloaded, The Curious
Case of Benjamin Button, The Digital Emily Project, Tron
Legacy), at the expense of significant artistic effort, espe-
cially in facial regions where automatic methods fail to cap-
ture subtle nuances of a performance, most notably around
the eyes and mouth. These limitations prevent us from con-
sidering template based methods for our system.

Hybrid techniques. [EVC07] obtains both scene geom-
etry and reflectance from photographs taken under multi-
ple views and multiple illumination conditions. The results
are robust and detailed, but reflectance is assumed to be
Lambertian, and it requires a large number of photographs
which would be impractical for dynamic performances.
Other works refine coarse geometry from one source with
photometric normals from another source to provide high-
frequency details [NRDR05,MJH∗08,HW08,WGP∗10], but
the coarse geometry may have artifacts that are too strong
to be removed by the refinement. At the other end of the
spectrum, [VPB∗09] uses surface normal integration to ex-
tract per-viewpoint geometry with good high frequency de-
tail but low frequency distortion, and then merges the ge-
ometries from multiple viewpoints to reduce the distortions.
However, the geometry obtained has not been shown to be
detailed enough for photorealistic facial performances.

3. Comprehensive Facial Performance Capture

Based on our review of prior work, the most promising ap-
proaches for comprehensive facial performance capture are
those that operate on data recorded from multiple views,
with a small number of multiplexed view-agnostic illumi-

nation conditions, and require no shape template or static
scans. We therefore borrow from previous works as follows:
Like [GGW∗98], we capture a dynamic facial performance
from multiple cameras simultaneously. Like [WGP∗10], we
robustly align temporally multiplexed gradient illumination
photographs to obtain photometric normals for every frame
of a performance. Inspired by [CGD09], we estimate fa-
cial reflectance from gradient illumination photographs us-
ing a novel heuristic. Inspired by [SSZ02, SFVG04, EVC07,
HW08], we derive a principled likelihood model combining
multi-view stereo correspondence with photometric stereo.
Inspired by multi-resolution graph cuts [HMJI09] and multi-
resolution belief propagation [VTSC04, YWA10], we em-
ploy a novel multi-resolution optimization approach, inter-
leaving discrete domain and continuous domain belief prop-
agation, yielding a result free of quantization artifacts. Fi-
nally, inspired by [BBB∗10] and others, we merge depth es-
timates from multiple viewpoints into a single geometry. The
output mesh and reflectance maps are suitable for rendering
in off-the-shelf software.

4. Data Acquisition

We acquire a sequence of photographs capturing an actor
under seven different illumination patterns, from five differ-
ent views, for every frame of a performance. The illumina-
tion patterns are produced by a programmable illumination
device, with 600 LED lights arranged in a sphere, similar
to [MHP∗07]. We position five Phantom v640 high-speed
cameras around the front of the sphere in an “M” config-
uration (see Figure 1) to provide adequate coverage of the
actor’s face with some freedom for head rotation and move-
ment. The resolution of the cameras (1600× 1936) is suffi-
cient to image fine skin details including pores. We calibrate
the cameras using the method in [Zha00]. The illumination
device cycles through seven gradient illumination patterns,
similar to [WGP∗10], which we call x, y, z, x̄, ȳ, z̄, and w. The
x, y and z patterns are linear gradients over the sphere from
0 brightness to full brightness, aligned to the world coordi-
nate axes. The x̄, ȳ and z̄ patterns are linear gradients aligned
to oppose the x, y and z patterns. The w pattern is uniform
half brightness over the entire sphere. Together, these pat-
terns encode first-order information for the reflectance func-
tion at every point on a surface. We also include four ad-
ditional illumination patterns for validation, for a total of
eleven patterns. The cameras are synchronized to the illu-
mination device to record an entire set of patterns for every
frame of performance capture output. In our tests, the out-
put rate is 24 fps, requiring 264 fps photography (or 168 fps
without validation patterns). It is also possible to reduce the
rate of photography with minor losses in quality as shown
in [WGP∗10], which may allow the use of lower-cost cam-
eras for performances having little rapid movement. To im-
prove actor comfort, we triple the rate of cycling through the
illumination patterns, to eliminate any perceptible flicker. To
record a complete set of triple-rate patterns without increas-
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ing the rate of photography, we expose each photograph for
only the first third of the shutter interval. The actor also wore
dark contact lenses, since the light is relatively bright.

5. Reflectance Estimation

We estimate reflectance information independently for each
camera, starting from gradient illumination photographs
aligned using the technique of [WGP∗10] to avoid artifacts
from fast head motion. We perform heuristic diffuse / specu-
lar separation of the uniform illumination photograph Iw, and
then find a surface normal that best explains the other gradi-
ent illumination photographs Ix, Iy, Iz. Our heuristic is based
on the observation that a gradient illumination photograph
with the bright pole of the gradient facing the camera qual-
itatively appears to lack Fresnel reflections on the face (see
z in figure 2), so the opposing gradient photograph should
somewhat resemble the specular component (see z̄ in figure
2). As gradient illumination is steerable, we computation-
ally rotate the illumination in the photographs to align to the
camera. We estimate the specular component S as the min-
imum of the three color channels of this image, since spec-
ular reflectance is typically achromatic. We then subtract S
from twice the uniform illumination photograph (2Iw) to ob-
tain an estimate of the diffuse albedo D. Assuming a Lam-
bertian diffuse lobe plus a specular lobe centered about the
ideal specular reflection direction, the gradient illumination
photograph with gradient axis β has intensity:

G(β) = 1
2 D(1+ kDn ·β)+ 1

2 S(1+ kSr ·β), (1)

where n is the surface normal, r = (2n · v)n− v is the ideal
specular reflection direction, v is the view direction, kD = 2

3
and kS ≈ 1 [MHP∗07]. We next search for the surface nor-
mal n minimizing |G(x̂)− Ix|2 + |G(ŷ)− Iy|2 + |G(ẑ)− Iz|2.
Due to the form of (1), we may assume n lies somewhere
between α and (α+ v)/‖α+ v‖, reducing the problem to a
one-dimensional search, where α is the centroid of the re-
flectance function (〈Ix−Iw, Iy−Iw, Iz−Iw〉, normalized). Af-
ter the surface normals are estimated for every pixel, we ap-
ply an unsharp mask sharpening filter to the surface normal
map. We use a constant filter width of 5 pixels in all exam-
ples, chosen to approximately cancel the subsurface scatter-
ing properties of human skin (from [WMP∗06]), considering
the typical width of one pixel in real world units. Finally, we
compute a view-independent specular albedo S′ = S/F(n,v),
where F(n,v) is a generic Fresnel term. Together, the diffuse
albedo D, specular albedo S′, and surface normal n parame-
terize our reflectance model. Figure 2 shows the input pho-
tographs, and the estimated reflectance parameters.

6. Geometry Estimation

We take a principled maximum likelihood approach to ge-
ometry estimation. Inspired by [SSZ02] and [SFVG04], we

Figure 2: Reflectance estimation. Upper left: x, y, z, w, x̄, ȳ,
z̄ gradient illumination photographs. Lower right: estimated
diffuse albedo, surface normal, and specular albedo.

consider the following likelihood model:

P(X ,R,O|I) = P(I|X ,R,O)P(X ,R,O)

P(I)
(2)

where X is a vertex position field, R is a reflectance function
field, O is an occlusion state field, and I is the set of input im-
ages. We make a similar simplification to the occlusion term
as [SSZ02] and assume O is independent of X ,R, yielding:

P(X ,R,O|I)∝ P(I|X ,R,O)P(X |R)P(R)P(O) (3)

(It is also possible to iteratively update P(O) as in [SLKS05],
but we obtain acceptable results for faces using the simpler
scheme.) We eliminate R,O by max marginalizing on X :

P(X |I) = max
R,O

P(X ,R,O|I)≈ P(X , R̄(X), Ō(X)|I), (4)

where, ignoring P(X |R) to make the solution tractable,

R̄(X), Ō(X) = argmax
R,O

P(I|X ,R,O)P(R)P(O). (5)

We are left with the following form:

P(X |I)∝ P(I|X , R̄(X), Ō(X))P(X |R̄(X))P(R̄(X))P(Ō(X))
(6)

We do not model any spatial correlations in R or O, and we
model pairwise spatial correlations in X , factoring (6) to:

P(X |I)∝∏
s∈S

P(I|xs, r̄s(xs), ōs(xs))P(r̄s(xs))P(ōs(xs))

∏
(s,t)∈N

P(xs,xt |r̄s(xs), r̄t(xt)) (7)

where S is the set of all sites in the field X , and N is the
set of all ordered pairs of neighboring sites in the field X .
The unit terms (in the product over S) represent photometric
consistency, reflectance likelihood, and occlusion likelihood.
The pairwise terms (in the product over N) represent a shape
prior, trained on reflectance. At a high level, the model is
related to the cost function in [EVC07] in that it contains a
term for photometric consistency and a term for shape based
on photometric normals, however theirs treats reflectance as
Lambertian, using a threshold to remove specular highlights,
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whereas our model estimates a more general reflectance dis-
tribution. Our model is also related to that in [HW08], but
we do not approximate the photometric consistency term
with a Gaussian distribution (which we believe poorly mod-
els sites with multiple high probability disparities), and we
also model occlusion. In the following subsections, we detail
the unit and pairwise terms.

6.1. Unit Term

The unit term P(I|xs,rs,os)P(rs)P(os) has three sub-terms.
The first sub-term represents photometric consistency:

P(I|xs,rs,os) = ∏
k /∈os

P(Ik(xs)|rs) (8)

where Ik(xs) represents the pixel values in the photographs
from camera k at projected position xs, and os is the set of
cameras for which xs is occluded. Inspired by [SFVG04], we
model P(Ik(xs)|rs) as a normal distribution in terms of rs:

P(Ik(xs)|rs) =N (rs;µk(xs),Σk(xs)) (9)

Where N (x;µ,Σ) is the multidimensional normal distribu-
tion with mean vector µ and variance matrix Σ. In our work,
rs is a vector consisting of diffuse albedo, specular albedo,
and surface normal. The mean vector µk(xs) is heuristically
estimated from Ik(xs) as in Section 5. Figure 3 shows the
reflectance estimate for each of the five viewpoints in one
frame of our tests. We use a camera sensor noise model
to estimate the uncertainty in Ik(xs), and propagate the un-
certainty through the computations in Section 5 using stan-
dard methods, yielding an estimate of the matrix Σk(xs). Be-
sides camera noise, we also provide tunable parameters θi to
model additional sources of uncertainty, modifying the diag-
onal of Σk(xs) by Σk(xs)i,i← (Σk(xs)

−1
i,i +θ

2
i )
−1.

The second sub-term, P(rs), represents a priori reflectance
likelihood. As rs already parameterizes the reflectance
model defined in Section 5, we simply ignore this term.

The third sub-term, P(os), represents a priori occlusion
likelihood. We model this as:

P(os) = P(occ)‖os‖ (10)

where P(occ) is the a priori likelihood of a pixel being oc-
cluded, provided as a tunable parameter. Despite its simplic-
ity, this term is sufficient to suppress blob artifacts which
would otherwise appear in occluded regions.

Since we do not model spatial correlations in R or O, we
may compute r̄s(xs) and ōs(xs) independently for each site:

r̄s(xs), ōs(xs) = argmax
rs,os

P(I|xs,rs,os)P(rs)P(os)

= argmax
rs,os

P(occ)‖os‖
∏

k /∈os

N (rs;µk(xs),Σk(xs)). (11)

Figure 3: Estimated reflectance parameters used as input to
the geometry optimization. Top row: diffuse albedo. Middle
row: specular albedo. Bottom row: surface normal. The first
column is the center camera (the subject’s head is turned
somewhat to her left).

For any assignment to os, we may maximize over rs by:

r?s (xs,os) = argmax
rs

∏
k /∈os

N (rs;µk(xs),Σk(xs))

=

[
∑

k /∈os

Σk(xs)
−1

]−1[
∑

k /∈os

Σk(xs)
−1µk(xs)

]
(12)

leaving:

ōs(xs) = argmax
os

P(occ)‖os‖

∏
k /∈os

N (r?s (xs,os);µk(xs),Σk(xs)) (13)

which we compute by exhaustive search over all possible
assignments to os. And finally, r̄s(xs) = r?s (xs, ōs(xs)).

6.2. Pairwise Term

The pairwise term P(xs,xt |r̄s(xs), r̄t(xt)) represents a shape
prior. Motivated by [HMJI09] and [HW08], we incorpo-
rate photometric normals into the prior, instead of generic
smoothing. To simplify optimization, we let the domain of X
be a depth map from the view of a primary camera j. Then:

P(xs,xt |r̄s(xs), r̄t(xt)) = P(ds,dt |r̄s(xs), r̄t(xt)) (14)

where xs = p+vsds, p is the nodal point of camera j in world
space, vs is the direction of the camera ray passing through
the center of the pixel at site s, ds is the depth at site s, and
likewise for subscript t. It is possible to construct a likeli-
hood model in terms of ds,dt for use in a belief propagation
framework, including the effects of perspective and indepen-
dent reflectance estimates for each depth. However, the mes-
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sage passing step in belief propagation would be costly con-
sidering the entire domain of possible depth pairs, and we
would rather take advantage of distance transforms [FH04]
to efficiently compute messages. We may employ distance
transforms if we express (14) in terms of the discrete depth
gradient dt −ds instead of ds,dt , ignoring the effects of per-
spective and removing the dependency of r̄s(xs), r̄t(xt) on
ds,dt through an approximation:

P(ds,dt |r̄s(xs), r̄t(xt))≈ P(dt −ds|µ j(xs),µ j(xt)). (15)

If the two pixel sites s and t lie on a continuous surface, we
may compute an expected depth gradient ∆ds,t ≈ dt−ds as:

∆ds,t = d̂t

(
1
2
− 1

2
ns · vt

ns · vs

)
− d̂s

(
1
2
− 1

2
nt · vs

nt · vt

)
(16)

where ns,nt are the surface normals in µ j(xs),µ j(xt) and
d̂s, d̂t are prior depth estimates (initially a typical depth, and
in later iterations of our optimization, the depth estimates
of the previous iteration). We may then use standard meth-
ods for uncertainty propagation to incorporate ∆ds,t , Σ j(xs)
and Σ j(xt) into a Gaussian model for dt − ds. If, however, s
and t straddle a surface discontinuity, then the depth gradi-
ent may take on much larger values than those implied by
the surface normals. We provide for this case by truncating
the quadratic term in the Gaussian distribution to be no more
than some constant. We truncate the quadratic to one side of
the mean only, being the side that is further from zero, since
we presume the depth gradient of the closer surface to have
greater magnitude than that of the farther surface at the point
of discontinuity. We heuristically model the truncation con-
stant in terms of µ j(xs),µ j(xt), favoring continuous surfaces
where the reflectance parameters at s and t are similar.

6.3. Optimization

We seek to find a depth map maximizing the likelihood de-
fined by (7), which we treat as an optimization problem
that seeks to maximize an objective function (or minimize
its negative logarithm). Such problems are rampant in com-
puter vision, and many methods for optimization have been
proposed (for example, [TF03] compares graph cuts and be-
lief propagation for stereo reconstruction). We desire con-
tinuous domain depth values, as opposed to discretely sam-
pled depth values, so that the subtleties captured by the pho-
tometric surface normals may appear in the final geome-
try. [HW08] obtains continuous domain depth values by us-
ing Gaussian belief propagation, however we do not wish
to approximate our photometric consistency term as a sin-
gle Gaussian. Another option would be to use a fusion move
optimization scheme [LRRB09], but this requires the gen-
eration of candidate solutions for fusion, which is an inex-
act science. Instead, we use discrete domain belief propaga-
tion interleaved with continuous domain (Gaussian) belief
propagation, profiting from the benefits of both. Motivated
by recent work in multi-resolution optimization schemes
[VTSC04, HMJI09, YWA10], we improve performance by

starting with a low resolution version of the problem, and
doubling the resolution between each pass of interleaved dis-
crete domain and continuous domain belief propagation, un-
til the original resolution is reached. For both the discrete
and continuous domain belief propagation, we choose Tree-
Reweighted Sequential Belief Propagation (TRW-S) [Kol06]
for its convergence properties and simple implementation.

Initialization. We begin with a coarsely spaced depth do-
main sampling (64 samples in the figures in this paper) on
a downsampled input, downsampled just enough so that the
window of depth samples covers the entirety of the desired
performance volume.

Discrete phase. In our discrete phase, the domain for each
pixel in the depth map is a window of equally spaced depth
samples centered around the most likely depth from the pre-
vious resolution. Unlike [VTSC04, YWA10], we allow the
depth window centers to take fractional values, obtained
from the most likely depth values from the previous contin-
uous phase. Since the previous continuous solution has only
half the resolution of the current phase, we query it with bi-
linear interpolation, randomly jittering the pixel coordinate
by up to plus or minus one half pixel to avoid grid artifacts.
We iterate discrete domain TRW-S belief propagation for a
number of iterations (10 in the figures in this paper).

Continuous phase. In our continuous phase, the domain
for each pixel in the depth map is a Gaussian distribution.
The pairwise terms in our objective function are truncated
Gaussians, so we simply omit the truncation. However, the
unit terms in our objective function are not Gaussian, but
are well represented by discrete sampling. We therefore ap-
proximate each pixel’s unit term by a Gaussian distribution,
using a least squares fit to the discrete unit term weighted
by the estimated a posteriori likelihood distribution (belief)
from the previous discrete phase. This weighting adapts the
Gaussian approximation of the unit term to the previous dis-
crete solution. We iterate continuous domain TRW-S belief
propagation for a larger number of iterations (100 in the fig-
ures in this paper) since it is fast.

Iteration. After the discrete and continuous phases are
executed, we restore the input to the next larger resolution,
narrow the spacing of the discrete depth sampling by half,
and jump back to the discrete phase again. We continue it-
erating until finally the original high resolution input is pro-
cessed. This approach combines the benefits of a discrete
solution with the benefits of a continuous solution, without
the drawback of oversimplifying the objective function.

Normal adjustment. Sometimes spatially correlated bias
in the estimated surface normals will introduce small cracks
or seams in the resulting geometry, due to the inability of
our likelihood model to represent such correlations. As a
work-around, we pause the multi-resolution scheme just be-
fore the final resolution is computed, and perform an adjust-
ment on the low frequencies of the normals in a similar style
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to [NRDR05], presuming that the depth estimate of the pre-
vious resolution is a good depth estimate.

6.4. Removing Uncertain Pixels

[SSZ02] uses the entropy of the inferred a posteriori likeli-
hood distribution to estimate the uncertainty in the recovered
depth. We adopt the same strategy and cut out uncertain pix-
els in the result using an entropy threshold. After removing
uncertain pixels, small random patches of pixels may remain
due to uncertainty in the entropy, so we segment the remain-
ing pixels along steep depth gradients and cull away any seg-
ments smaller than a threshold number of pixels.

6.5. Merging

Although our geometry estimation operates on photographs
from multiple cameras, the optimization domain is a depth
map from the viewpoint of a single camera. Therefore we
repeat the geometry estimation from the viewpoint of each
camera in our system, and then merge the results into a single
mesh, by projecting the vertex positions and reflectance pa-
rameters into a common cylindrical coordinate system (see
figure 4). We weigh the contribution of each camera by
the inverse projected area between neighboring vertices, and
feather the weights to reduce seams. We then perform hole
filling in the cylindrical domain.

Figure 4: Left: Depth maps computed from the viewpoint of
each camera are merged into a single mesh. Right: Merged
reflectance maps: diffuse, specular, normal.

7. Results

We show results from our system for a live facial perfor-
mance, processed automatically with no manual clean-up,
and rendered under novel viewpoints and lighting conditions
with subsurface scattering and global illumination using the
V-Ray rendering software from Chaos Group. The running
time of the optimization using a straightforward implemen-
tation on a single 3 GHz Intel processor core was 50 minutes
per camera per frame, totalling 250 minutes per merged out-
put frame. However, the different cameras and output frames

may be processed in parallel on multi-core machines, so wall
clock times were smaller. We also estimated per-vertex ve-
locity using optical flow techniques, to enable physically-
based motion blur rendering. Figure 5 shows renderings

Figure 5: Illumination by a small spherical light source.
Top row: ground truth. Bottom row: our result.

under high-frequency illumination (a small spherical light
source) compared to ground truth photographs, which were
not used in the reconstruction. The estimated diffuse and
specular albedos and surface normals are sufficient informa-
tion to achieve photorealistic results even under these unfor-
giving illumination conditions. Figure 6 shows renderings

Figure 6: Subsets of the captured information. Left to right:
Raw geometry, addition of normal map, addition of diffuse
and specular albedo maps.

using the skin shader lit by a small spherical light source,
using subsets of the captured information. The raw geome-
try contains enough detail to support gross shadowing and
subsurface scattering effects. The normal map adds a life-
like reconstruction of fine details like skin pores and blem-
ishes even in the absence of any color texture. The diffuse
and specular albedo maps provide the base color of the face
and subtle variation in the highlights. Figure 7 shows se-
lected renderings (every twentieth frame) from a fifteen sec-
ond performance capture sequence, with novel camera mo-
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Figure 7: Every twentieth frame of a fifteen second performance, with novel camera motion, and motion blur.

tion, and synthetic motion blur ( 1
96 second exposure). Us-

ing multiple cameras, short exposure photographs, and view-
agnostic active illumination conditions allows the actor to
deliver an emotional performance, including head rotation
and rapid jerking motions, without compromising the fi-
delity of the reconstruction. Figure 8 illustrates the versa-

Figure 8: Renderings under image based lighting environ-
ments. Photorealistic results are achieved under both soft
and harsh direct lighting, including back lighting. (The black
dots on the subject’s face are not used by our system.)

tility attained by having highly detailed reflectance infor-
mation, with renderings under image based lighting envi-
ronments (from www.debevec.org). Photorealism is upheld
under a wide variety of illumination conditions. Figure 9
shows a close-up rendering, highlighting the realism of sub-
tle skin details under grazing lighting conditions. Facial per-
formance capture systems that avoid active illumination sim-
ply do not achieve this level of photorealism. Figure 10 com-
pares the proposed method to [WGP∗10], for geometry ob-
tained from two views. The quality of the geometry is com-
parable, with the proposed method recovering improved ge-
ometry around the sides of the face and neck, and notably the
eyelids. Figure 11 shows the facial coverage afforded by our

Figure 9: The reflectance information captured by gradient
illumination provides subtle skin details that remain lifelike
even under grazing lighting conditions.

system. With five cameras, the entire face is captured even
as the subject turns her head from 30◦ left to 30◦ right.

8. Limitations and Future Work

While our system produces photorealistic reconstructions of
facial performances, there are a number of approximations,
shortcuts, or limitations we wish to address in the future. The
most visually objectionable artifact is an occasional spike
poking out of the face. The depth maps computed by our
optimization exhibit no such artifacts, but sometimes have
patches of background geometry floating beside the face that
are not culled by our entropy thresholding. These floaters
may be erroneously projected onto the face in the cylindri-
cal domain during merging. We would like to use a better
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Figure 10: The proposed method compared to [WGP∗10].
Left to right: Proposed (subject 1), [WGP∗10] (subject 1),
proposed (subject 2), [WGP∗10] (subject 2).

Figure 11: Clones rendered from three viewpoints, for two
frames of a performance, illustrating full facial coverage.

merging algorithm, or to directly optimize a single geome-
try in a more suitable domain than a depth map. Initial tests
using Poisson merging [KBH06] indicate that the spike arti-
facts can be avoided without relying on any post-processing.
We may investigate better diffuse / specular separation to re-
duce the bias in the reflectance estimate. We may also seek
to model the bias in the reflectance estimate, to reduce its ef-
fect on the reconstructed geometry, and to generally improve
our principled likelihood model by making fewer approxi-
mations and assumptions. In our tests, the subjects captured
wore a hat covering their hair and ears. An area wide open
for future exploration is including hair and ears in the cap-
ture, possibly even extending all the way around the head
using more cameras. Finally, methods for computing dense
temporal correspondences across entire performances could
be investigated, to facilitate any editing operations to be per-
formed on the captured performances, including integration
into conventional production pipelines.

9. Conclusion

In this work we present comprehensive facial performance
capture. To our knowledge, this is the first facial perfor-
mance capture system to achieve photorealistic reconstruc-
tions, with full facial coverage, of a dynamic, emotional per-
formance under both novel viewpoints and novel illumina-
tion in an automatic setting. Facial features are reconstructed
that are often omitted in previous work, such as eyes and
teeth, though they could stand some improvement in future
work. Fine surface details such as skin pores and blemishes
are recovered faithfully. This level of realism is achieved
by estimating detailed reflectance information and detailed
geometry independently for each frame of the performance,
without the need for any template geometry or static scans.
This is made possible by two key contributions: The first is a

novel heuristic for estimating detailed facial reflectance from
gradient illumination photographs. The second is a novel ge-
ometry optimization framework that maximizes a principled
likelihood function combining multi-view stereo correspon-
dence and photometric stereo, using a novel multi-resolution
belief propagation approach combining discrete domain and
continuous domain belief propagation. We demonstrate the
realism of performances captured by our system with photo-
realistic renderings made in off-the-shelf software, with sub-
surface scattering, global illumination, and motion blur. The
renderings are a close match to ground truth photographs.
Photorealism is maintained both under novel viewpoints and
under novel illumination, including high-frequency illumi-
nation, back-lighting, and grazing illumination.
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