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Fig. 1. Given a single neutral scan (a), we generate a complete set of dynamic face model assets, including personalized blendshapes and physically-based
dynamic facial skin textures of the input subjects (b). The results carry high-fidelity details which we render in Arnold [Maya 2019] (c). Our generated facial
assets are animation-ready as shown in (d).

The creation of high-fidelity computer-generated (CG) characters for films
and games is tied with intensive manual labor, which involves the creation
of comprehensive facial assets that are often captured using complex hard-
ware. To simplify and accelerate this digitization process, we propose a
framework for the automatic generation of high-quality dynamic facial
models, including rigs which can be readily deployed for artists to polish.
Our framework takes a single scan as input to generate a set of personal-
ized blendshapes, dynamic textures, as well as secondary facial components
(e.g., teeth and eyeballs). Based on a facial database with over 4, 000 scans
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with pore-level details, varying expressions and identities, we adopt a self-
supervised neural network to learn personalized blendshapes from a set of
template expressions. We also model the joint distribution between iden-
tities and expressions, enabling the inference of a full set of personalized
blendshapes with dynamic appearances from a single neutral input scan.
Our generated personalized face rig assets are seamlessly compatible with
professional production pipelines for facial animation and rendering. We
demonstrate a highly robust and effective framework on a wide range of
subjects, and showcase high-fidelity facial animations with automatically
generated personalized dynamic textures.

CCS Concepts: • Computer methodologies→ Face Animation.

Additional Key Words and Phrases: Face Rigging, Blendshapes, Animation,
Physically-Based Face Rendering, Performance Capture, Deformation Trans-
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1 INTRODUCTION
High-quality and personalized digital humans are relevant to a wide
range of applications, such as film and game production (e.g. Unreal
Engine, Digital Doug), and virtual reality [Fyffe et al. 2014; Lombardi
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et al. 2018; Wei et al. 2019]. To produce high-fidelity digital dou-
bles, complex capture equipment is often needed in conventional
computer graphics pipelines, and the acquired data typically under-
goes intensive manual post-processing by a production team. New
approaches based on deep learning-based synthesis are promising
as they show how photorealistic faces can be generated from cap-
tured data directly [Lombardi et al. 2018; Wei et al. 2019] allowing
one to overcome the notorious Uncanny Valley. In addition to their
intensive GPU compute requirements and the need for large vol-
umes of training data, these deep learning-based methods are still
difficult to integrate seamlessly into virtual CG environments as
they lack relighting capabilities and fine rendering controls, which
prevents them from being adopted for games and film production.
On the other hand, realistic digital doubles in conventional graphics
pipelines require months of production and involve large teams
of highly skilled digital artists as well as sophisticated scanning
techniques [Ghosh et al. 2011]. Building facial assets of a virtual
character typically requires a number of facial expression models
often based on the Facial Action Coding System (FACS), as well as
physically-based texture assets (e.g., albedo, specular maps, displace-
ment maps) to ensure realistic facial skin reflectance in a virtual
environment.
Several recent works have shown how to automate and reduce

the effort for generating personalized facial rigs. The works of Laine
et al. [2017]; Li et al. [2010]; Ma et al. [2016]; Pawaskar et al. [2013]
propose to automatically build personalized blendshapes using a
varying number of personalized facial scans. While effective for
production pipelines, these methods either require a large number
of facial scans as input and considerable post-processing, or they
only focus on generating a personalized geometry for the expres-
sions, without the textures. For consumer-accessible avatar creation
techniques, the works of Casas et al. [2016]; Hu et al. [2017]; Ichim
et al. [2015]; Nagano et al. [2018]; Thies et al. [2016] demonstrate
digitization capabilities from video sequences or even a single input
image. However, due to the limited input data, the resulting models
often lack details or the generated assets do not contain physically-
based properties for dynamic expressions. We propose an approach
based on a 3D scan as input and our goal is to produce a fully rigged
model with fixed topology, personalized blendshapes expressions
along with corresponding dynamic and physically-based texture
maps. We observe that a large amount of labeled data can enable the
learning of personalized models and dynamic deformations such
that wrinkle formations are specific to the shape and appearance of
the subject. In particular, we extend recent deep learning approaches
for high-resolution physically-based skin assets [Li et al. 2020; Ya-
maguchi et al. 2018], to generate dynamic high-resolution facial
texture attributes (albedo, specular maps, and displacement maps),
in order to produce effects such as plausible personalized wrinkles
during animation. Existing methods transfer facial expression de-
tails from a generic database, which may lead to reasonable output
for the geometry, but certainly lack dynamic texture variations.

We present a framework to automate and simplify the generation
of high-quality facial rig assets, consisting of personalized blend-
shapes, dynamic physically-based skin attributes (albedo, specular
reflection, displacement maps), including secondary facial compo-
nents (e.g. eyes, teeth, gums, and tongue), from a single neutral

geometric model and albedo map as input. Our generated assets
can be directly fed into professional production pipelines. We use a
high-fidelity facial scan database [Li et al. 2020] and address both
the problems of generating personalized blendshapes and infer-
ring dynamic physically-based skin properties. We first propose
an end-to-end self-supervised learning framework to overcome the
lack of ground truth data for personalized blendshapes and dynamic
textures. By modeling the correlation between identities and person-
alized expressions on the database with 178 identities, each having
19∼26 different captured expressions, we eliminate the requirement
of user-specific scans for personalized blendshapes generation us-
ing a trade-off between semantic meaning and personality. Our
approach uses an intermediate conversion of neutral geometry and
2D textures to a common parameterization in UV space, which
enables training and inference of dynamic geometry and texture
deformation in a compact form inspired by Li et al. [2020].
Learning is performed using a high-fidelity facial scan dataset

with over 4000 scans with pore-level details and different expres-
sions. Our approach can automatically produce personalized blend-
shapes that reflect personalized expressions of a person from only
one neutral scan. We demonstrate the effectiveness of our frame-
work on a wide range of subjects and showcase a number of com-
pelling facial animations.

In summary, our major contributions are as follows:

• We propose an end-to-end framework to automate the gen-
eration of high-quality facial assets and rigs. Given a single
neutral face scan with albedo as input, we produce plausi-
ble personalized blendshapes, secondary facial components
(e.g. teeth, eyelashes), and most importantly, physically-based
textures that are both dynamic and personalized to the ap-
pearance of the input subject.

• We present a novel self-supervised deep learning approach
to improve the personalized results using a generic facial
expression template model. In particular, our approach can
model the joint distribution between individual identities and
their expressions in a large high-fidelity face database.

• We also introduce a novel physically-based texture synthesis
framework conditioned on neutral geometry and textures.
Using a new compress and stretch map approach, we are able
to synthesize dynamic expression-specific textures, including
albedo, specular, and fine-scale displacement maps.

• We will make our code, models and database with all texture
assets public to facilitate further research on automating high-
quality avatar generation.

2 RELATED WORK
Facial Capture. Due to increased demands for realistic digital

avatars, facial capture and performance capture have been well-
studied. Based on a multi-view stereo system, fine-scale details of
the captured face can be recovered in a controlled environment
with multiple calibrated DSLR cameras as in the work of Beeler et al.
[2010]. A more intricate system by Ghosh et al. [2011] extends the
view-dependent method [Ma et al. 2007] by adopting fixed linear
polarized spherical gradient illumination in front of the cameras
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and enables accurate acquisition of diffuse albedo, specular inten-
sity, and pore-level normal maps. Fyffe et al. [2016] later propose a
method that employs commodity hardware, while recording compa-
rable results with off-the-shelf components and near-instant capture.
Meanwhile, works on passive facial performance capturing [Beeler
et al. 2011; Bradley et al. 2010; Fyffe et al. 2014; Valgaerts et al. 2012]
have shown impressive detailed results for highly articulated mo-
tion. Recently, Gotardo et al. [2018] propose a method to acquire
dynamic properties of facial skin appearance, including dynamic
diffuse albedo, specular intensity, and normal maps. These methods
provide decent training data and set a high baseline for lightweight
facial capture and modeling approaches.

Facial Rigging. Creating facial animation is a well-studied prob-
lem with a plethora of methods proposed in film and video game
industries. Blanz and Vetter [1999] first introduce the Morphable
Face Model to represent face shapes and textures of different iden-
tities using principal component analysis (PCA) learned from 200
laser scan subjects. Later, the improved parametric face models are
built using 10, 000 high-quality 3D face scans [Booth et al. 2017,
2016]. A linear model generated from web images has also been
demonstrated [Kemelmacher-Shlizerman 2013].
Modeling of variational face expressions using blendshapes is

a popular approach in many applications [Thies et al. 2015, 2016].
The approach models facial expressions as activation of shape units
represented by a linear basis of facial expression vectors [Lewis
et al. 2014]. Amberg et al. [2008] combines a PCA model of a neutral
face with a PCA space derived from the residual vectors of different
expressions to the neutral pose. Blendshapes can either be hand-
crafted by animators [Alexander et al. 2009; Olszewski et al. 2016],
or be generated via statistical analysis from large facial expression
datasets [Cao et al. 2014; Li et al. 2017; Vlasic et al. 2005]. The multi-
linear model [Cao et al. 2014; Vlasic et al. 2005] offers a way of
capturing a joint space of expression and identity. Li et al. [2017]
propose the FLAME model learned from thousands of scans and
significantly improve the model expressiveness.

Personalized Blendshape Generation. As an effort to advance and
scale the production of facial animations, expression cloning [Noh
and Neumann 2001] has been introduced to mimic the existing
deformation of a source 3D face model onto a target face. Sumner
and Popovió [2004] propose deformation transfer for generic 3D
triangle mesh. Onizuka et al. [2019] propose a landmark-guided
deformation transfer method to generate expressions for any target
avatar that directly maps to a generic blendshape template. These
methods can generate an expression for a novel subject but might
fail to capture personalized behavior due to the lack of personal
information.
To build robust face rigs, we need to reconstruct a dynamic ex-

pression model that faithfully captures the subject’s specific facial
movements. A full set of personalized blendshapes for a specific
subject can be built from 3D scan data of the same subject [Carri-
gan et al. 2020; Huang et al. 2011; Li et al. 2010; Weise et al. 2009;
Zhang et al. 2004]. These methods can reconstruct expressions that
capture the target’s personal expressions, but a large set of action
units or sparse expressions are required as input. Some follow-up
works [Bouaziz et al. 2013; Hsieh et al. 2015; Li et al. 2013] apply

expression transfer on top of a generic face model and train model
correctives for the expressions during tracking with samples ob-
tained from RGB-D video input. Ichim et al. [2015] and Cao et al.
[2016] propose a comprehensive pipeline to generate a dynamic
3D avatars based on personalized blendshapes with a monocular
video of a specific expression sequence. Casas et al. [2016] recon-
struct blendshapes and each blendshape’s textures with a Kinect.
Garrido et al. [2016] introduce a video-based method, which makes
blendshape generation suitable for legacy video footage.

Deep Face Models. As deep learning-based methods for 3D shapes
analysis have attracted increasing attention in recent years, some
methods for non-linear 3D Morphable Model learning have been
introduced [Bagautdinov et al. 2018; Li et al. 2020; Tewari et al. 2017;
Tran et al. 2019; Tran and Liu 2018]. These models are formulated
as decoders using convolutional neural networks, some of these
methods use fully connected layers or 2D convolutions in the image
space [Li et al. 2020], while some build decoders in the mesh domain
to exploit the local geometry of 3D structures [Abrevaya et al. 2019;
Cheng et al. 2019; Litany et al. 2018; Ranjan et al. 2018; Zhou et al.
2019].

Image-to-Image Translation. Isola et al. [2017] present Pix2Pix,
a method to translate images from one domain to another. It con-
sists of a generator and a discriminator, where the objective of the
generator is to translate images from domain A to B, while the
discriminator aims to distinguish real images from the translated
ones. Wang et al. [2018b] later extend this work to Pix2PixHD to
synthesize high-resolution photo-realistic images from semantic
label maps. Some works [Lee et al. 2019; Wang et al. 2019, 2018a] on
the learning of “translation” functions for videos also incorporate a
spatio-temporal adversarial objective. Image-to-image translation
has also been adopted to generate 3D faces or detailed face textures.
Matan Sela [2017] propose a Pix2Vertex framework using image-to-
image translation that jointly maps the input image to a depth image
and a facial correspondence map. Huynh et al. [2018] applies this
image-to-image translation framework to infer mesoscopic facial
geometry with high-quality training data captured using the Light
Stage. Yamaguchi et al. [2018] presents a comprehensive method
to infer facial reflectance maps from unconstrained image input.
Nagano et al. [2018] introduces a framework to synthesize arbitrary
expressions in image space and textures in UV space from a single
input image. Chen et al. [2019] adopts a conditional GAN to synthe-
size geometric details (wrinkles) by estimating a displacement map
over a proxy mesh. Similarly, Yang et al. [2020] infers a displacement
map on a base mesh generated from a single image based on a large
high-quality face dataset.

3 SYSTEM OVERVIEW
Our system takes a single scanned neutral geometry with an albedo
map as input and generates a set of face rig assets and texture at-
tributes for physically based production-level rendering. As shown
in Fig. 2, we developed a cascaded framework, in which we first
estimate a set of personalized blendshape geometries of the input
subject using a Blendshape Generation network, followed by a Tex-
ture Generation network to infer a set of dynamic maps including
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Fig. 2. System Overview. Given the model from a single scan in a neutral expression, the blendshape generation module first generates its personalized
blendshapes. Then, using the personalized blendshapes, along with the input neutral model and its albedo map, the texture generation module produces
high-resolution dynamic texture maps including albedo, specular intensity and displacement maps. With these assets ready, we then assemble personalized
blendshapes and the input neutral model into 3D models, combining other facial components (eyes, teeth, gums, and tongue) from the template models. The
final output is complete face models rendered using the blendshape models and textures.

albedo maps, specular intensity maps, and displacement maps. In
the final step, we combine the obtained secondary facial compo-
nents (i.e. teeth, gums, and eye assets) from a set of template shapes,
to assemble the final face model.

4 BLENDSHAPE GENERATION
Our goal is to automatically generate a full set of personalized blend-
shapes from a neutral 3D face of a novel subject. This is a challenging
problem since generating subject-specific blendshapes usually re-
quires different expressions of the subject. Thanks to our large-scale
dataset which consists of various expressions as described in Sec.
7, we introduce a self-supervised pipeline that learns to generate
personalized blendshapes based on expressions. Our first task is to
imitate the process followed by artists isolating scanned expressions
to unit blendshapes using deep neural networks. Given a set of
pre-defined generic template blendshapes as a semantic reference
and multiple well-defined scan expressions of the same subject, our
first goal is to automatically generate the personalized blendshapes
of the input subject.
The generic template blendshape model is defined as a generic

model 𝑆0 in neutral expression and a set of 𝑁 (in our case 𝑁 = 55)
additive vector displacements S = {𝑆1, ..., 𝑆𝑁 }. Expressions can be
generated as 𝑃𝑘 = 𝑆0 + ∑𝑁

𝑖=1 𝛼𝑖𝑘𝑆𝑖 , where 𝛼𝑖𝑘 are the blending
weights for the expression 𝑘 . For a new subject 𝑗 , given his/her
neutral expression model 𝑆 𝑗0 and other expressions 𝑃 𝑗

𝑘
, their per-

sonalized blendshapes 𝑆 𝑗
𝑖
can be optimized by minimizing the re-

construction loss of 𝑃 𝑗
𝑘
′ and ground truth expression 𝑃 𝑗

𝑘
if blending

weights 𝛼 𝑗

𝑖𝑘
, 𝑖 = 1, ..., 𝑁 for 𝑃 𝑗

𝑘
are known:

𝑃
𝑗

𝑘
′ = 𝑆 𝑗0 +

𝑁∑︁
𝑖=1

𝛼
𝑗

𝑖𝑘
𝑆
𝑗
𝑖
. (1)

This is the foundation of our self-supervised learning scheme.

Based on our template blendshape set, we also pre-defined 𝑘 = 26
FACS expressions for building the dataset (excluding neutral ex-
pression). The FACS expressions refer to a set of standardized facial
poses that can be performed by a person and generally correspond
to a combination of blendshapes (blending weights will be either
0 or 1) with minimum motion overlap and maximum blendshape
coverage. We assume that our captured FACS covers all the blend-
shapes and they can be isolated to unit blendshapes losslessly (more
details in Sec. 7). So far, for each of the training subjects, we have a
set of captured FACS expressions with corresponding combinations
(0 or 1 blending weights). However, it would be irresponsible to say
that the blending weights of FACS can be regarded as ground truth
for real scans. One can easily perform unwanted motions when
trying to express a predefined FACS expression (e.g. FACS smile
consists only Left_Lip_Corner_Puller and Right_Lip_Corner_Puller,
ended with unexpected eye motion captured). To address this issue,
we propose a two-stage learning framework as shown in Fig. 3. The
Estimation Stage, as the first one, fixes the initial blending weights
to generate a set of blendshapes that optimally preserves identity
and semantics, while its counterpart, the Tuning Stage, finetunes
the initial blendshapes by jointly learning blending weights to better
fit captured FACS expressions.

4.1 Estimation Stage
As shown in Fig. 3, the Estimation Stage takes a model with neutral
expression 𝑆 𝑗0 and pre-defined blending weights for FACS expression
𝑃
𝑗

𝑘
as its input. It contains of a Blendshape Generator, which learns to

generate personalized blendshapes that are used to reconstruct the
expression 𝑃 𝑗

𝑘
using Eq. 1. We define a reconstruction loss in Eq. 2

between the reconstructed expression and the input expression.

𝐿𝑟𝑒𝑐 =
∑︁
𝑥 ∈𝑃 𝑗

𝑘

𝑃 𝑗
𝑘
′(𝑥) − 𝑃 𝑗

𝑘
(𝑥)


1
. (2)
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Personalized
blendshapes
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Fig. 3. Two-stage self-supervised learning framework. Given a model in a neutral expression, the Estimation Stage first predicts the initial blendshapes
which will work as input for the Tuning Stage to generate the final personalized blendshapes. The inference pipeline is connected by solid lines. The training
architecture also involves the parts in dashed lines for computing reconstruction loss. In the Estimation Stage, the Blendshape Generator learns to generate the
initial blendshapes from the input neutral expression, which combines with the known blending weights to reconstruct the non-neutral expressions. In the
Tuning Stage, the Blending Weight Predictor is added to predict blending weights for the personalized blendshapes which will be used to reconstruct the input
expression.

Inspired by the idea in Li et al. [2010] which emphasizes the impor-
tance of relative change between the template and the target models,
we propose to learn blendshape offsets instead of blendshapes them-
selves because: (1) blendshape offsets are distributed in a nearly
standard normal distribution which is easy for the network to learn;
(2) blendshape offsets can better demonstrate the identity difference.
For the example in Fig. 4, the same expression of two different sub-
jects are presented, where their difference is most obviously shown
by the blendshape offsets. Thus, the output of the Blendshape Gener-
ator, {Δ𝑆 𝑗1, ...,Δ𝑆

𝑗
𝑛}, are the offsets from the template blendshape to

the target, which can be used to reconstruct the target personalized
blendshapes by adding the template blendshapes as:

𝑆
𝑗
𝑖
= Δ𝑆

𝑗
𝑖
+ 𝑆𝑖 ,∀𝑖 ≥ 1. (3)

To make the target blendshapes semantically consistent with the
template blendshapes, we define a regularization term on blend-
shape offsets to minimize their relative difference.

𝐿𝑟𝑒𝑔 =

𝑁∑︁
𝑖=1

∑︁
𝑥 ∈𝑆𝑖

𝑔𝑖𝑚𝑖 (𝑥)
������Δ𝑆 𝑗𝑖 (𝑥)������1 ,∀𝑖 ≥ 1. (4)

where 𝑔𝑖 are global weights for different kinds of blendshapes and
𝑚𝑖 (𝑥) are local weights for each vertex 𝑥 in the blendshape 𝑆𝑖 ,
defined as Eq. 5 and Eq. 6.
The global weights are defined as:

𝑔𝑖 =
_𝑔∑

𝑥 ∈𝑆𝑖 ∥𝑆𝑖 (𝑥)∥2
,∀𝑖 ≥ 1. (5)

where _𝑔 is a scale factor restricting the maximum 𝑔𝑖 to 1. Consider-
ing the scale difference in different blendshapes, we introduce global
weights to balance the influence of each blendshape for regulariza-
tion loss. For example, the shape Jaw_Open involves more moving
vertices than Left_Eye_Open. If the same weight is assigned to both,
the regularization loss will be dominated by Jaw_Open, thus under-
estimating less pronounced shapes. Thus, we adopt a strategy that
assigns a smaller regularization weight to blendshapes with larger
offset scale. A similar strategy is used in Chen et al. [2018], where

2

(a) (b) Distance

Fig. 4. Visualization of cosine distance maps between expressions, blend-
shapes and blendshape offsets. (a) and (b) show the same expression of
different subjects represented by absolute positions in expression geometry
𝑃
𝑗

𝑖
(Row 1), blendshape offsets from neutral expression 𝑆

𝑗

𝑖
(Row 2) and off-

sets from the template blendshape Δ𝑆 𝑗

𝑖
(Row 3). Note that the distance map

in Row 1 is almost filled with zeroes. This is because the average difference
of the same expression between different individuals is much less than the
scale of the human head.

adaptive weights for multi-objective loss are applied to balance the
gradients in the training.

The local weights𝑚𝑖 are defined by normalized norms of template
blendshapes in which the vertex values are normalized to (0, 1]:

𝑚𝑖 (𝑥) =
_𝑖
𝑙

∥𝑆𝑖 (𝑥)∥2
,∀𝑥 ∈ 𝑆𝑖 . (6)

where _𝑖
𝑙
is a scale factor restricting the maximum𝑚𝑖 to 1 (ex-

cluding fixed vertices), as for fixed vertices in blendshape 𝑆𝑖 (where
𝑆𝑖 (𝑥) = 0), we manually assign a relative large weight to constrain
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Single-branch network Two-branch network GT expression

Fig. 5. Comparison of two blendshape models generated by the Blendshape
Generator with a single-branch network and a two-branch network in the
Estimation Stage. GT expression represents the reference FACS expression
which is most semantically similar to the corresponding blendshape. Com-
pared to the single-branch results, the two-branch results are more similar
to the reference FACS expressions while keeping the semantic meaning of
the generic blendshapes.

their movements (we used 4 in our experiments). For each blend-
shape, the changes from the input neutral face are dominated by
only a subset of vertices while the remaining vertices remain un-
changed. The local weights are used to penalize large movements
of the unchanged vertices and ensure the overall isolation of the
generated blendshapes.
Finally, we combine the reconstruction loss 𝐿𝑟𝑒𝑐 and the regu-

larization term 𝐿𝑟𝑒𝑔 to yield the loss function for the Blendshape
Generator :

𝐿𝐺 = 𝐿𝑟𝑒𝑐 + 𝜔𝑟𝑒𝑔𝐿𝑟𝑒𝑔, (7)
where 𝜔𝑟𝑒𝑔 is the regularization weight which is set to 1 in the
training.
The Blendshape Generator is a 2D convolutional neural network

(CNN), similar to the image translator in Liu et al. [2019], consisting
of an identity encoder and a blendshape decoder. The encoder, same
as the content encoder in Liu et al. [2019], is made of a few 2D
convolutional layers followed by several residual blocks. It takes
a neutral expression 𝑆 𝑗0 as input and maps it into a content latent
code that is a spatial feature map. The decoder consists of several
instance normalization residual blocks followed by a couple of up-
scale convolutional layers. It decodes the feature vector into the
blendshape offsets. To adapt 3D models to a compact representation
which is friendly for the 2D CNN, we represent every 3D model as a
2D geometry image by first registering all the input 3D models with
a same topology and aligning them in UV space (implementation
details in Sec. 7), in which each pixel stores the 𝑥 −𝑦 −𝑧 coordinates
of one vertex.
Instead of training the generator in one network, we adopt a

two-branch architecture inspired by Bai and Ghanem [2017] which
uses a multi-branch network for face detection and tracking with
different face size.

We observe that the scale of different blendshapes varies greatly.
Thus we came up with a two-branch training strategy. We separate
our blendshapes into two categories: 14 extreme blendshapes with

relatively large motion and the rest with small motion. As shown in
Fig. 5, the two-branch network makes the generated blendshapes
more personalized and closer to the reference FACS expression.

4.2 Tuning Stage
In the Estimation Stage, the blending weights are given, and con-
sistent for all subjects, but practically it is hard to guarantee that
different subjects can realize the same exact expressions. In this
scenario, the fixed blending weights lead to inaccuracy when fit-
ting such expressions for different subjects. Therefore, we relax
constraints on the blending weights and instead learn them with
a neural network. As shown in Fig. 3, compared to the Estimation
Stage, the initial blendshapes work as additional input to the Blend-
shape Generator, and another BlendingWeight Predictor is introduced
to predict blending weights from the input expression in the Tuning
Stage.

The Blending Weight Predictor shares a similar network architec-
ture as the Blendshape Generator which consists of an expression
encoder and a blending weight decoder. Given an input expression
𝑃
𝑗

𝑘
, the encoder maps it to an expression latent code, followed by

the decoder which decodes the latent code into a vector of 𝑁 blend-
ing weights whose values are constrained in [0, 1]. Combining the
blending weights with the personalized blendshapes generated by
the Blendshape Generator, we reconstruct the input expression using
Eq. 1. The loss used to constrain the output of the Blending Weight
Predictor is the reconstruction loss defined in Eq. 2.
In order to preserve the semantics and personality of the ini-

tial blendshapes generated by the Estimation Stage, we define the
regularization term as follows:

𝐿𝑟𝑒𝑔𝐹𝑇 =

𝑁∑︁
𝑖=1

Δ𝑆 𝑗𝑖𝐹𝑇 − Δ𝑆
𝑗
𝑖


1
, (8)

where Δ𝑆 𝑗
𝑖𝐹𝑇

are the target blendshape offsets and Δ𝑆
𝑗
𝑖
are initial

blendshape offsets generated in the Estimation Stage. Thus, the loss
function used in the Tuning Stage is:

𝐿𝐺𝐹𝑇
= 𝐿𝑟𝑒𝑐 + 𝜔𝑟𝑒𝑔𝐹𝑇 𝐿𝑟𝑒𝑔𝐹𝑇 , (9)

where 𝜔𝑟𝑒𝑔𝐹𝑇 = 0.1. In our implementation, we add skip connec-
tions from the initial blendshape to the generator output (as shown
in the red line in Fig. 3) such that the generator predicts Δ𝑆 𝑗

𝑖𝐹𝑇
−Δ𝑆

𝑗
𝑖
.

Examples of with andwithout tuning are shown in Fig. 6, we observe
that the Tuning Stage achieves better fitting results by fine-tuning
the blendshapes, and jointly optimizing blending weights while
preserving the semantics and personality.

5 DYNAMIC TEXTURE GENERATION
In this section, we first introduce our compact representation of
dynamic texture assets- Compress and Stretch maps, followed by
a learning-based method to infer/extract them. Finally, we demon-
strate the utilization of our Compress and Stretchmaps for rendering
at run-time.

5.1 The Representation
Compress and Stretch Maps. When static textures (obtained from

a neutral expression) are used to render extensive expressions, the
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Estimation Stage Tuning Stage GT expression

Fig. 6. Comparison of two reconstructed expressions by the Estimation
Stage alone andwith the addition of the Tuning Stage, along with error maps
between the reconstructed expressions and the ground truth expressions.
The output from the Tuning Stage results in better reconstruction with
smaller fitting errors.

Neutral albedo

Neutral 

geometry

Expression 

offset

Expression

specular

Expression

displacement (H)

Input

Pix2PixHD

Expression 

Albedo

Pix2PixHD

Expression

displacement (L)

Output

Fig. 7. Texture Generative Network. Given the albedomap and the geometry
image of the input model in neutral expression and the geometry image of
the target expression offset, the first network generates the albedo map of
the expression using pix2pixHD [Wang et al. 2018b]. Then, combining the
initial input and prediected albedo map, the second network infers specular
intensity, low-frequency, and high-frequency displacement maps.

missing details (e.g. wrinkles) caused by facial motion will signifi-
cantly reduce the photo-realism of rendering results. Especially for
the extreme/exaggerated expressions, high-fidelity muscle move-
ment and micro-expressions make big differences. A natural way
to solve this problem is to customize a set of dynamic textures for
blendshapes. However, the number of blendshapes used in high-end
industries may be of the magnitude of hundreds or thousands. The
creation of such large dynamic textures is costly and requires sub-
stantial computational power. More importantly, it is difficult to load
such a vast collection of dynamic textures into a rendering engine
at once, in particular, with multiple layers (e.g. albedo, specular in-
tensity, displacement maps) at high resolution. A memory-efficient,
compact, and easy-to-compute dynamic representation is needed.

Fig. 8. Generated textures and ground truth textures of an expression. Row
1 from left to right: low-resolution albedo map (1K × 1K), high-resolution
albedo map (4K × 4K), and specular intensity map. Row 2 from left to
right: low-frequency, high-frequency and combined displacement maps.
Row 3 from left to right: ground truth of albedo, specular intensity and
displacement maps.

1

Fig. 9. Illustration of Compress and Stretch Maps. From Top to Down Rows:
Neutral Static maps, Compress maps, Stretch maps. From Left to Right
Columns: Diffuse Albedo maps, Specular maps, Normals maps (in tangent
space) computed from Displacement maps.

Moreover, it should also be expressive enough to cover all the possi-
ble dynamic details of facial motion losslessly. We adopt Compress
and Stretch Maps as shown in Fig. 9 along with a static neutral tex-
ture to be the dynamic texture library, which is a commonly adopted
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Stretch

Compress

(a) (b)

Fig. 10. Illustration of Influence maps. (a). Influence value rendered in geometries with different expressions (Mouth Right, Smile and Lip Funnel). (b). Selected
Influence maps from a set of blendshapes and an example of dynamic albedo with its corresponding influence map in the blendshape CheckSquint_L. Note
that we store compress and stretch influence maps as 𝑅 and𝐺 channels and set 𝐵 channel to zeros.

…

Fig. 11. Illustration of Compress Maps Extraction. Left: expression textures
generated from networks. Right: compress maps extracted by blending ex-
pression textures based on the influence maps. Note that the final compress
maps gather all the dynamic details caused by skin local compression (in
the orange circles) from all the expressions.

format in the industry [Oat 2007]. Guided by Influence Maps, com-
press and stretch maps gather the most prominent features caused
by the local compression/stretching movement of all the available
expressions.

Influence Maps. Influence maps are computed based on the geom-
etry changes between the expressions and the neutral face. For each
of the vertices 𝑥 on the neutral mesh 𝑁 , we define the average edge
length of its one-ring neighbors as 𝐸𝑁 (𝑥), and then for an arbitrary
expression mesh 𝑃 of the same subject, the influence value of each
vertex on 𝑃 in compress maps can be computed as:

𝐼𝑃𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠
(𝑥) =

{
∥ 𝐸𝑁 (𝑥) − 𝐸𝑃 (𝑥) ∥, 𝐸𝑃 (𝑥) < 𝐸𝑁 (𝑥)
0, 𝐸𝑃 (𝑥) ≥ 𝐸𝑁 (𝑥)

. (10)

Similarly, the influence value of each vertex on 𝑃 in stretch maps
is as follows:

𝐼𝑃𝑆𝑡𝑟𝑒𝑡𝑐ℎ (𝑥) =
{
∥ 𝐸𝑃 (𝑥) − 𝐸𝑁 (𝑥) ∥, 𝐸𝑃 (𝑥) > 𝐸𝑁 (𝑥)
0, 𝐸𝑃 (𝑥) ≤ 𝐸𝑁 (𝑥)

. (11)

Based on the per-vertex influence values, we interpolate a per-
pixel compress and stretch influence map as shown in Fig. 10. Note
that we store compress and stretch influence maps as 𝑅 and 𝐺
channels separately. The influence maps provide the weights to
blend and extract dynamic textures.

5.2 Compress and Stretch Map Generation
In the standard industry pipeline, the compress and stretch maps are
handcrafted by skilled artists using numerous captured expressions
as reference. To automate this procedure, especially when only a
single scan is provided in our scenarios, we came up with a two-step
solution. Firstly, we predict the texture maps (i.e. albedo, specu-
lar intensity, and displacement) of the input subject’s pre-defined
expressions using a deep neural network. Then a blending step is
introduced to fuse them into compress and stretch maps.

Expression Texture Generation Networks. Given a single neutral
scan with an albedo map, in order to predict the high-fidelity albedo,
specular intensity, and displacement maps of different expressions,
we propose a cascade architecture, as shown in Fig. 7. We first take
the neutral geometry with its albedo map and the target expression
offset from the neural geometry as input to predict the albedo map
offset of the target expression. The predicted offset is then added
to the neutral albedo map to generate the expression albedo map
as the intermediate results, further combining the input of the first
network to be fed into the second network. The second network
then infers the specular intensity and displacement maps. Both of
the networks are the Pix2pixHD [Wang et al. 2018b] model, which
contains an encoder with several CNN layers, followed by a couple
of Resnet blocks, and a decoder with similar architecture. The reason
of using a cascade network with an expression albedo map as inter-
mediate results include: (1) the specular intensity and displacement
maps generated using the albedo map as a prior have fewer artifacts
and higher quality; (2) this architecture allows us to handle incom-
plete training data (some of the subjects do not have the specular
intensity and displacement maps). In particular, we separate the
displacement map into low-frequency and high-frequency during
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training, following Huynh et al. [2018]; Yamaguchi et al. [2018] to
make the problem more tractable and merge them together before
using. Both input and output of the two networks have 1𝐾×1𝐾 reso-
lution. Furthermore, with all these 1𝐾 result maps, we up-scale them
into 4𝐾 × 4𝐾 using a pre-trained super-resolution network [Ledig
et al. 2017]. In Fig. 8, we show a complete set of expression textures
generated by our networks.

Compress and Stretch Map Extraction. We design an algorithm
to extract compress and stretch maps based on the influence maps
from the above predicted expression textures as shown in Fig. 11.
Let 𝐼𝑖 be the influence map of the 𝑖th expression, and the influence
value of each pixel (𝑥,𝑦) is 𝐼𝑖 (𝑥,𝑦). We first normalize the influence
map of all the expressions with a weighted sum strategy to ensure
the spatial consistency among all the expressions as follows (take
the compress map as an example):

𝐼𝑖𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠
(𝑥,𝑦) = 𝑒

𝐼𝑖𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠
(𝑥,𝑦)∑

𝑖
𝑒
𝐼𝑖𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠

(𝑥,𝑦) , (12)

in which 𝐼𝑖𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠
is the normalized influence map of 𝐼𝑖𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠

(𝑖 =
1 . . . 𝑁 ) where 𝑁 is the number of expressions.

Once we get the normalized influence maps, the compress map is
computed as follows:

𝑇𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠 (𝑥,𝑦) =
∑︁
𝑖

𝐼𝑖𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠
(𝑥,𝑦)𝑇𝑖 (𝑥,𝑦), (13)

Where 𝑇𝑖 is the texture of the 𝑖th expression, and it can be one
of the albedo, specular, and displacement. The stretch maps are
computed similarly. Finally, we obtain compress and stretch maps
for albedo, specular, and displacement maps, respectively.

5.3 Runtime Dynamic Texture Generation
When using dynamic assets for rendering in runtime applications,
such as tracking, animation, we first solve the blending weights
of each input expression using personalized blendshapes. Those
blending weights combined with a set of pre-defined influence maps
of blendshapes, will be used to sample the current dynamic tex-
tures from compress and stretch maps. The dynamic textures are
generated as follows:

𝑇 (𝑥,𝑦) =𝑇𝑁 (𝑥,𝑦)

+
𝑁∑︁
𝑖

(
𝛼𝑖 𝐼𝑖𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠

(𝑥,𝑦) (𝑇𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠 (𝑥,𝑦) −𝑇𝑁 (𝑥,𝑦))

+𝛼𝑖 𝐼𝑖𝑆𝑡𝑟𝑒𝑡𝑐ℎ (𝑥,𝑦) (𝑇𝑆𝑡𝑟𝑒𝑡𝑐ℎ (𝑥,𝑦) −𝑇𝑁 (𝑥,𝑦))
)

(14)

where 𝑇𝑁 is the static texture of neutral expression, 𝑇𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠 and
𝑇𝑆𝑡𝑟𝑒𝑡𝑐ℎ correspond to the compress and stretch textures, 𝐼𝑖𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠

and 𝐼𝑖𝑆𝑡𝑟𝑒𝑡𝑐ℎ are the influence maps of the 𝑖th blendshape and 𝛼𝑖
indicates its blending weight.

6 ASSEMBLY
In addition to the primary dynamic assets (face geometry and tex-
tures) generated using networks, we also include secondary com-
ponents (e.g. eyeballs, lacrimal fluid, eyelashes, teeth, and gums)
in our avatar as shown in Fig. 14. We handcrafted a set of generic

Fig. 12. Selected FACS units from Light Stage Dataset. From left to
right: Neutral, Eye_close_Lip_corner_Puller, Eyes_Up_Lip_Funneler, In-
ner_Brow_Raiser_Dimpler, Upper_Lip_Raiser_Lower_Lip_Depressor_Outer_
Brow_Raiser, Brow_Lowerer_Inner_Brow_Raiser_Lip_Presser.

(a) (b) (c)
Fig. 13. Laplacian deformation results of neutral mesh to target expression
model using (a) landmarks only, and (b) dense optical flow correspondence.
(c) Target expression.

blendshapes with all the primary and secondary parts. We further
use this set of generic blendshapes to linearly fit each expression
generated by our networks based on corresponding vertices on the
facial regions. The computed coefficients based on the primary parts
drive the secondary components, such that eyelashes will travel
with eyelids. The linearly fitted secondary elements will be com-
bined with the primary facial parts to get an integrated face model.
Except for eyeball, other secondary parts share a set of generic tex-
tures for all the subjects. For eyeball textures, we adopt an eyeball
assets database [Kollar 2019] with 90 difference eye textures (pupil
patterns) to match with input subjects.

7 DATASET
The facial scan dataset used in training comes from a combined
source of aligned face models with 4k resolution textures and ge-
ometries aligned to a known topology [Li et al. 2020]. The dataset
consists of 178 scan subjects divided into two sets, one of 78 (Light
Stage), and one of 100 subjects ([Triplegangers 2019]); performing 26
and 20 static FACS expressions respectively. The FACS expressions
are fixed, which enables labeling of corresponding weights in our
set of template blendshapes. This feature is particularly useful when
isolating orthogonal shapes that are combined under the scanning
session. One such example may be the combination of action unit 1
(Inner brow raiser), and action unit 14 (Dimpler) [Ekman and Friesen
1978]. This makes it possible to significantly reduce the number of
scans needed (Fig. 12).
The assumptions that have to be realized under the learning of

corresponded face morphologies described in section 3 are (1) a
rigid transformation of each subject’s skull shape can be found for
every expression the subject performs, (2) sparse correspondence
among subjects need to be established for a common parameteriza-
tion to be usable, and (3) dense correspondence among expressions
need to be established for each subject to track minute changes in
skin deformation using texture maps. Next, we describe how these
problems are solved to generate the desired dataset.
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Fig. 14. Our face model consists of multiple parts including face, eyes, eye
blend mesh, lacrimal fluid, eye occlusion, eyelashes, teeth, gums and tongue.

7.1 Face Model Registration.
Neutral Scans Registration. First, a linear 3Dmorphable face (PCA)

model is used to fit the neutral face of a scan subject, reconstructed
using multi-view stereo [Hsieh et al. 2015]. Secondly, the fitted
model is further deformed using the non-rigid iterative closest point
method [Li et al. 2008] constrained by facial landmarks [Sagonas
et al. 2016]. Additional Laplacian mesh surface warping is applied
for surface detail reconstruction [Li et al. 2009].

Expression Scans Registration. We first estimate the blendshape
expressions from our template set using the same algorithm, but
varying blendshape weights in composite to identity PCA weights
and followed by landmarks refinement step. We further introduce a
Laplacian deformation step with dense constraints based on multi-
view 2D optical flow between the current expression and neutral
expression to densely correspond expressions belonging to the same
subject [Fyffe et al. 2017], see Fig. 13.

7.2 Texture Data Generation
By leveraging polarized spherical gradient illumination [Ghosh et al.
2011; Ma et al. 2007] we can compute skin micro-structure, and
material intrinsics such as diffuse albedo and specularity as we have
seen inferred by our pixel translation networks. Specifically, these
maps are computed on a fixed aligned topology provided by the
before mentioned morphable face model.

7.3 Template Blendshape Model
Our blendshape model is based on the naming convention of Apple’s
ArKit with additional modifications enabling asymmetries for eye-
brow shapes. The shapes were computed by fitting a set of around
50 scanned face neutrals along with their performed FACS shapes.
By computing averages over all subjects, keeping each expression
fixed, we could find reasonable averages of each shape which could
be artistically isolated to keep linear independence and semantic
meaning; and to avoid self-intersection.

8 RESULTS

8.1 Implementation Details
We split our data into two subsets: training set (137 subjects) and
testing set (41 subjects). Each of the subsets covers a wide span of

Table 1. Run time for each component in our framework.

Component Time (ms)
Estimation Stage (Single Branch) 2.386
Tuning Stage 2.200
Texture Generation - Albedo map 130.9
Texture Generation - Displacement & Specular 398.1
Texture Generation - Up-scaling 3801

age, gender, and race. We learn our Blendshape generation networks
using the RMSProp optimizer with a fixed learning rate of 0.0001 and
a batch size of 4. For the texture generation network, it is optimized
by the Adam optimizer with a fixed learning rate of 0.0002, batch
size of 1. We train Estimation Stage and Tuning Stage for about
50,000 and 60,000 iterations respectively on an NVIDIA GeForce
RTX 2080 GPU. And we train texture generation model on NVIDIA
Tesla V100.

8.2 Experiments
Run Time. We record the run time of each component for an end-

to-end system test (Table 1). Testing of our blendshape generation
model was performed on an NVIDIA GeForce RTX 2080 GPU while
texture generation was performed on an NVIDIA Tesla V100.
Compared to the standard high resolution avatar generation

pipeline, that requires intensive manual work of weeks or months
of time along with many reference expressions to be captured, our
proposed approach is fast, low-cost, and robust (high-resolution
training data ensures the output avatar quality).

Results. In Fig. 15, we show selected expressions of novel subjects
rendered using all the assets automatically generated by our frame-
work from different sources of input data. Results show that our
generated dynamic textures capture the middle-frequency details
such as wrinkles and folds. In particular, the generated blendshapes
of different individuals show that our approach captures the user-
specific motion properties (e.g. Mouth Right in row two, four, six)
with the semantics preserved. Note that all the generated subjects
are unseen by the networks. Input test data from 3DScanstore [2019]
and low-quality data captured by a mobile device are from a differ-
ent domain and have never been observed by our networks. Hence,
these results indicate the robustness of our framework.

Comparison and Evaluation. In Fig. 16, by combining the same
neutral with the corresponding personalized Blendshapes units
(Jaw Open and Mouth Right) belonging to different individuals, we
showcase that our network is successful in imposing user-specific
motion features to the template blendshapes.
In Fig. 17, we show an extreme expression’s fitting results with

template blendshapes and our generated personalized blendshapes
separately. Results indicate that our generated personalized blend-
shapes perform better in the non-rigid deformation (e.g. double-chin
when open mouth).

In Fig. 18, we demonstrate the influence of personalized blend-
shapes on reconstruction/tracking accuracy by swapping blend-
shapes of two subjects during expression tracking. Results show
that personalized blendshapes will be more expressive to the input

ACM Trans. Graph., Vol. 39, No. 6, Article 215. Publication date: December 2020.



Dynamic Facial Asset and Rig Generation from a Single Scan • 215:11

Middle Brows 
Together

Middle Brows 
Together

Middle Brows 
Together

Middle Brows 
Together

Middle Brows 
Together

Middle Brows 
Together

Mouth Left

Jaw Open

Left Outer Brow  
Raiser

Left Outer Brow  
Raiser

Left Outer Brow  
Raiser

Left Outer Brow  
Raiser

Mouth Right

Mouth Right

Right  Outer Brow  
Raiser

Right  Outer Brow  
Raiser

Right  Outer Brow  
Raiser

Right  Outer Brow  
Raiser

Mouth RightLeft  Cheek Lip  Corner 
Puller

Mouth Right

Fig. 15. Expressions reconstructed by face rig assets generated by our framework with inputs from multiple sources. From left to right: Column 1: input
neutral including geometry and albedo. Column 2 to Column 4: selected reconstructed expressions. Column 5 to Column 7: selected blendshape units. From
top to bottom: Row 1 and Row 2: input neutral from Triplegangers [Triplegangers 2019], Row 3 and Row 4: input neutral from online resources [3DScanstore
2019], Row 5 and Row 6: input neutral from Light Stage testing set. Row 7: Input neutral from iPhone X Arkit. The last example shows that our method can
also be applied to data captured by a low-quality device despite that low-resolution input image may reduce the resulting quality.
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Fig. 16. Demonstration of customized identity of individuals on our generated blendshapes expressions. We combine blendshapes units from different
individuals with the same template neutral (shown in orange). Row 1: source individuals. Row 2: combine personalized Jaw_Open of individuals in row one
with template neutral. Row 3: combine personalized Mouth_Right of individuals in row one with template neutral.

Fig. 17. Comparison of extreme expression fitting using template blend-
shapes and our generated personalized blendshapes. Left: fitting results
using template blendshapes. Middle: fitting results using our generated
Personalized blendshapes. Right: ground truth expression.

identity regarding tracking accuracy, especially in the facial part
with more non-linear and large motion (e.g.Mouth). This result also
demonstrates the effectiveness of our network: One of our network
objective is to achieve better reconstruction of scanned expression.
In Fig. 19, we further compare our generated blendshapes with

template blendshapes and the method of Li et al. [2010]. Results
show that our approach is comparable to Li et al. [2010] in the task of
imposing personality to template blendshapes. Note that in Li et al.
[2010], 26 references scanned expression are used for optimization
purposes. On the other side, our results are obtained based on a

>5mm

(a) (b) (c) (d)

Fig. 18. Numerical analysis of the expressiveness of personalized blend-
shapes on expression tracking by swapping Blendshapes. (a) Neutrals of
two individuals. (b) Reconstruction error using personalized Blendshapes
from counterpart individuals. (c) Reconstruction error using their own per-
sonalized Blendshapes. (d) Target expressions.

single neutral scan. Another observation is that our deep learning-
based method shows more robust results with fewer artifacts (e.g.
the left mouth corner on the blendshape Mouth Left).
In Fig. 20, we show dynamic displacement generated by our

framework on novel subjects. Results show the effectiveness of
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Mouth_Open Mouth_Left

Template

Li et al. [2010]
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Fig. 19. Comparison of selected generated Blendshapes units with template generic and Li et al. [2010]. Row 1: template blendshapes generated by expression
transferred from a set of generic blendshapes using method in Sumner and Popovió [2004]. Row 2: blendshapes optimized with method in Li et al. [2010]. Row
3: our method. Note that the results generated in Li et al. [2010] are from 26 scanned expressions, ours are from a single neutral input.

Fig. 20. Dynamic displacement map predicted by our framework. Left: base
geometries. Middle: results by applying generated displacement to base
geometries. Right: closed-up comparison before and after applying dynamic
displacement maps.

our displacement network, which infers middle frequency details
(e.g. wrinkles) as well as high-frequency mesoscopic details.

In Fig. 23, we show the results and comparison of our generated
dynamic textures on different subjects. Compared to static albedo
from input neutral, our generated dynamic albedo predicts wrin-
kles, and folds caused by local self-occlusion of middle-frequency
geometry change during deformation. The results also show that
our predicted dynamic specular and displacement maps add meso-
scopic details on top of diffuse albedo. It greatly improves the visual
realism of rendering, which is important for high-end applications.

Table 2. Reconstruction errors between the ground truth expressions and
the reconstructed expressions using blendshapes by different methods on
training and testing datasets.

Method Training ↓ Testing ↓
Template blendshapes 1.661 1.638
Optimization method [Li et al. 2010] 1.389 1.483
Ours 1.341 1.372

In Fig. 21, we compare our generated full set of face rig assets with
the state-of-the-art paGAN [Nagano et al. 2018]. Note the the base
geometry used by paGAN [Nagano et al. 2018] are reconstructed
from a single frontal image while ours are based on a high-quality
scan. Compared to paGAN, our avatar shows better quality and
much more details, which indicates that a good quality neutral scan
serves better in the task of high-end avatar generation. The results
also shows the unique physically-based skin assets will greatly
improve the avatar rendering quality. The displacement map in our
assets captures the middle frequency and pore-level details.

8.3 Applications
Expression Reconstruction/ Face Tracking. In Fig. 22, we compare

our generated personalized blendshapes on fitting of performance
capture sequences with other methods. As shown in Fig. 18, smaller
fitting errors indicates better personality on blendshapes. Results
show that our generated personalized blendshapes outperform base-
line methods (Template and optimization-based method in Li et al.
[2010] on accuracy of the face tracking task using the same solver.
To provide better quantitative evidence, we evaluate face reconstruc-
tion on 2,548 expressions in training dataset and 626 expressions
in testing datasets. The results are listed in Table 2. Blendshapes
optimized by Li et al. [2010] and ours show smaller reconstruction
errors in both training and testing data.
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Reference Avatars

(a)

(b)

Fig. 21. Comparison of generated face avatars between paGAN [Nagano
et al. 2018] and our method. (a) and (b) show two cases of generated avatars
from the neutral model in reference images. In each case, Row 1 shows the
avatars generated by paGAN [Nagano et al. 2018] while Row 2 shows our
results.

Animation. In Fig. 24, we show that our generated face rig assets
can be used directly for animation. Please refer to accompanying
video material for more results.

9 CONCLUSION
We have demonstrated an end-to-end framework for high-quality
personalized face rig and asset generation from a single scan. Our
face rig assets include a set of personalized blendshapes, physically
based dynamic textures and secondary facial components (including
teeth, eyeballs, and eyelashes). Compared to previous automatic
avatar and facial rig generation approaches, which either require a
considerable number of person-specific scans or can only produce a
relatively low-fidelity avatar, our framework only requires a single
neutral scan as input and can produce plausible identity attributes
including physically-based dynamic textures of facial skins. This
characteristic is key to creating compelling animation-ready avatars
at scale.

We achieve the above objective by modeling the correlation be-
tween identity and personalized blendshapes using an extensive
dataset of high-resolution facial scans. In particular, our generated
dynamic textures add details from mid-frequencies (wrinkles) to
mesoscopic ones (pore level). Our automatically generated face rig
assets are valuable for real-world production pipelines, as these
high-fidelity initial models can be provided to artists for fine-tuning
or simply used as secondary characters for crowds. Our proposed
method is fast, robust, and lightweight, allowing production studios
to simply scan a neutral face of a person and immediately obtain a
high-quality facial rig. An interesting insight from our experiments
is that the identity seems to be enough for a plausible inference of
personalized facial appearance and dynamic expressions. In addition
to our framework, we have also introduced a novel self-supervised
deep neural network training approach to deal with the case when
no ground truth data is available, which in our case are the person-
alized blendshapes.

Limitations and Future Work. As a deep learning approach, the
effectiveness of our algorithm relies on the variety and volume of
training data of our database. In particular, facial expressions that
are specific to young subjects could be improved, due to the lack of
young subjects in our current database. For the same reason, our
framework also does not perform well on subjects with facial hair
or beard as shown in Fig. 25. We plan to augment our database to
cover more diversity and appearance variations.

Our template model consists of 55 blendshape vectors, which can
recover most of the expressions in daily life and is commonly used
in lightweight applications. However, certain extreme expressions
still cannot be represented by our model. Our proposed network
architecture can be adapted for arbitrary template blendshapes.
Thus, we are interested in exploring more sophisticated blendshape
rigs that consist of hundreds to thousands of expressions, such as
the ones used in film production. We use generic eyes and teeth
models for all the generated avatars. An interesting direction would
be to explore how to generate personalized eyes [Bérard et al. 2016,
2019] and teeth [Velinov et al. 2018; Wu et al. 2016] automatically
as well.
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Fig. 23. Results and comparison on Dynamic Textures. (a) Input static albedo and expression renders. (b) Our generated dynamic albedo for the specific
expression and renders. (c) Our generated dynamic specular and displacement maps and renders using full set of generated assets (dynamic albedo, specular
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ACM Trans. Graph., Vol. 39, No. 6, Article 215. Publication date: December 2020.



215:16 • Jiaman Li, Zhengfei Kuang, Yajie Zhao, Mingming He, Karl Bladin, and Hao Li

(b)
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et al. 2015]), then feed this map to our texture generation network. From
left to right columns: input neutral static albedo map; generated dynamic
albedo of one expression by our network; close-up details of static (Top)
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