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Abstract

This paper presents the first end-to-end network for
exemplar-based video colorization. The main challenge is
to achieve temporal consistency while remaining faithful to
the reference style. To address this issue, we introduce a re-
current framework that unifies the semantic correspondence
and color propagation steps. Both steps allow a provided
reference image to guide the colorization of every frame,
thus reduce accumulated propagation errors. Video frames
are colorized in sequence based on the history of coloriza-
tion, and its coherency is further enforced by the temporal
consistency loss. All of these components, learnt end-to-
end, help produce realistic videos with good temporal sta-
bility. Experiments show our result is superior to the state-
of-the-art methods both quantitatively and qualitatively.

1. Introduction

Prior to the advent of automatic colorization algorithms,
artists revived legacy images or videos through a careful
manual process. Early image colorization methods relied on
user-guided scribbles [1, 2, 3, 4, 5] or a sample reference [6,
7, 8, 9, 10, 11, 12, 13] to address this ill-posed problem, and
more recent deep-learning works [14, 15, 16, 17, 18, 19, 20]
directly predict colors by learning color-semantic relation-
ships from a large database.

A more challenging task is to colorize legacy videos. In-
dependently applying image colorization (e.g., [15, 16, 17])
on each frame often leads to flickering and false disconti-
nuities. Therefore there have been some attempts to im-
pose temporal constraints on video colorization. A naı̈ve
approach is to run a temporal filter on the per-frame col-
orization results as a post-processing [21, 22], which can

alleviate the flickering but cause color fading and blur-
ring. Another kind of approaches propagate the color scrib-
bles from one frame to the following according to optical
flow [1, 2, 23, 24, 25]. However, scribbles propagation may
be not perfect due to flow error, which will induce some vi-
sual artifacts. The most recent methods assume that the first
frame is colorized and then propagate its colors to the fol-
lowing frames [26, 27, 28, 29]. This is effective to colorize
a short video clip, but the errors will progressively accumu-
late when the video is long. These existing techniques are
generally based on color propagation and do not consider
the content of all frames when determining the colors.

We instead propose a method to colorize video frames
jointly considering three aspects, instead of solely relying
on the previous frame. First, our method takes the result
of the previous frame as input to preserve temporal consis-
tency. Second, our method performs colorization using an
exemplar, allowing a provided reference image to guide the
colorization of every frame, thus reduce accumulated errors.
Thus, finding semantic correspondence between the refer-
ence and every frame is essential to our method. Finally,
our method leverages large-scale data for learning, so that it
can predict natural colors based on the semantics of the in-
put grayscale image when no proper matching is available
in either the reference image or the previous frame.

To achieve the above objectives, we present the first end-
to-end convolutional network for exemplar-based video col-
orization. It is a recurrent structure that allows history infor-
mation passing to the present for keeing consistency. Each
state consists of two major modules: a correspondence sub-
net to align the reference to the input frame based on dense
semantic correspondences, and a colorization subnet to col-
orize a frame guided by both the colorized result of its previ-
ous frame and the aligned reference. All subnets are jointly
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trained, yielding multiple benefits. First, the jointly trained
correspondence subnet is tailored for the colorization task,
thus achieving higher quality. Second, it is two orders of
magnitude faster than the state-of-the-art exemplar-based
colorization method [30] where the reference is aligned in
a pre-processing step using a slow iterative optimization al-
gorithm [31]. Moreover, the joint training allows adding
temporal constraints on the alignment as well, which is es-
sential to consistent video colorization. This entire network
is trained in an unsupervised way with novel loss functions
considering natural occurrence of colors, faithfulness to the
reference, spatial smoothness and temporal coherence.

The experiments demonstrate that our video colorization
network outperforms existing methods quantitatively and
qualitatively. Moreover, our video colorization allows two
modes. If the reference is a colorized frame in the video, our
network will perform the same function as previous color
propagation methods but in a more robust way. More im-
portantly, our network supports colorizing a video with a
color reference of a different scene. This allows the user to
achieve customizable multimodal results by simply feeding
various references, which cannot be accomplished in previ-
ous video colorization methods.

2. Related work
Interactive Colorization. Early colorization methods fo-
cus on using local user hints in the form of color points
or strokes [1, 2, 3, 4, 5]. The local color hints are propa-
gated to the entire image according to the assumption that
coherent neighborhoods should have similar colors. These
pioneering works rely on the hand-crafted low-level fea-
tures for the color propagation. Recently, Zhang and Zhu et
al. [32] proposed to employ deep neural networks to prop-
agate the user edits by incorporating semantic information
and achieve remarkable quality. However, all of these user-
guided methods require significant manual interactions and
aesthetic skills to generate plausible colorful images, mak-
ing them unsuitable for colorizing images massively.

Exemplar-based Colorization. Another category of
work colorize the grayscale images by transferring the color
from the reference image in a similar content. The pioneer-
ing work [6] transfers the chromatic information to the cor-
responding regions by matching the luminance and texture.
In order to achieve a more accurate local transfer, various
correspondence techniques have been proposed by match-
ing low-level hand-crafted features [7, 8, 9, 10, 11, 12, 13].
Still, these correspondence methods are not robust to com-
plex appearance variations of the same object because low-
level features do not capture semantic information. More
recent works [33, 30] rely on the Deep Analogy method [31]
to establish the semantic correspondence and then refine the
colorization by solving Markov random field model [33]

or a neural network [30]. In those work, the correspon-
dence and the color propagation are optimized indepen-
dently, therefore visual artifacts tend to arise due to corre-
spondence error. On the contrary, we unify the two stages
within one network, which is trained end-to-end and pro-
duces more coherent colorization results.

Fully Automatic Colorization. With the advent of deep
learning techniques, various fully automatic colorization
methods have been proposed to learn a parametric map-
ping from grayscale to color using large datasets [14, 15,
16, 17, 18, 19, 20]. These methods predict the color by
incorporating the low and high-level cues and have shown
compelling results. However, these methods lack the mod-
elling of color ambiguity and thus cannot generate multi-
modal results. In order to address these issues, diverse col-
orization methods have been proposed using the generative
models [34, 35, 36, 37, 38]. However, all of these automatic
methods are prone to produce visual artifacts such as color
bleeding and color washout, and the quality may signifi-
cantly deteriorate when colorizing objects out of the scope
of the training data.

Video Colorization. Comparatively, much less research
efforts focused on video colorization. Existing video col-
orization can be classified into three categories. One is to
post-process the frame-wise colorization with general tem-
poral filter [21, 22], but these works tend to wash out the
colors. Another class of methods propagate the color scrib-
bles to other frames by explicitly calculating the optical
flow [1, 2, 23, 24, 25]. However, scribbles drawn from
one specific image may not be suitable for other frames.
Another category of video colorization methods use one
colored frame as an example and colorize the following
frames in sequence. While conventional methods rely on
hand-crafted low-level features to find the temporal cor-
respondence [39, 40, 41], a recent trend is to use a deep
neural network to learn the temporal propagation in a data-
driven manner [26, 27, 28, 29]. These approaches generally
achieve better quality. However, a common issue of these
video color propagation methods is that the color propaga-
tion will be problematic if it fails on a particular frame.
Moreover, these methods require a good colored frame to
bootstrap, which can be challenging in some scenes, par-
ticularly when it is dynamic and with significant variations.
By contrast, our work refers to an example reference image
during the entire process, thus not relying solely on color
propagation from previous frames. It therefore yields more
robust results, particularly for longer video clips.
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Figure 1. The framework of our video colorization network. The
network consists of two subnets: correspondence subnet and col-
orization subnet. The colorization for the frame xl

t is conditional
on the previous colorized frame xl

t−1

.

3. Method

3.1. Overall framework

We denote the grayscale video frame at time t as xlt ∈
RH×W×1, and the reference image as ylab ∈ RH×W×3.
Here, l and ab represent the luminance and chrominance in
LAB color space, respectively. In order to generate tempo-
rally consistent videos, we let the network, denoted by GV ,
colorize video frames based on the history. Formally, we
formulate the colorization for the frame x̃lt to be conditional
on both the colorized last frame x̃labt−1 and the reference ylab:

x̃abt = GV (xlt|x̃labt−1, y
lab) (1)

The pipeline for video colorization is shown in Figure 1.
We propose a two-stage network which consists of two sub-
nets - correspondence network N and colorization network
C. At time t, first N aligns the reference color yab to xlt
based on their semantic correspondences, and yields two in-
termediate outputs: the warped color W ab and a confidence
map S measuring the correspondence reliability. Then C
uses the warped intermediate results along with the col-
orized last frame x̃labt−1 to colorize x̃lt. Thus, the network
colorizes the video frames in sequence and Eq. 1 can be
expressed as:

x̃abt = C(xlt,N (xlt, y
lab)|x̃labt−1) (2)

3.2. Network architecture

Figure 2 illustrates the two-stage network architecture.
Next we describe these two sub networks.

Correspondence Subnet. We build the semantic cor-
resondence between xlt and y using the deep features ex-
tracted from the VGG19 [42] pretrained on imge classifi-
cation. In N , we extract the feature maps from layers of
relu2 2, relu3 2, relu4 2 and relu5 2 for both xl and y.
The multi-layer feature maps are concatenated to form fea-
tures Φx,Φy ∈ RH×W×C for xlt, y respectively. Features
Φx and Φy are fed into several residual blocks to better ex-
ploit the features from different layers, and the outputs are
reshaped into two feature vectors: Fx, Fy ∈ RHW×C for
xlt and y respectively. The residual blocks, parameterized
by θN , share the same weights for xlt and y.

Given the feature representation, we can find dense cor-
respondence by calculating the pairwise similarity between
the features of xlt and y. Formally, we compute a correla-
tion matrixM ∈ RHW×HW whose elements characterize
the similarity of Fx at position i and Fy at j:

M(i, j) =
(Fx(i)− µFx) · (Fy(j)− µFy )

‖Fx(i)− µFx
‖2 ‖Fy(j)− µFy

‖2
(3)

where µFx and µFy represent mean feature vectors. We em-
pirically find such normalization makes the learning more
stable. Then we can warp the reference color yab towards
xlt according to the correlation matrix. We propose to cal-
culate the weighted sum of yab to approximate the color
sampling from yab:

Wab(i) =
∑
j

softmax
j

(M(i, j)/τ) · yab(i, j) (4)

We set τ = 0.01 so that the row vectorM(i, ·) approaches
to one-hot vector and weighted color Wab approximates
selecting one pixel in the reference with largest similarity
score. The resulting vectorWab serves as an aligned color
reference to guide the colorization in the next step. Note
that Equation 4 has a close relationship with the non-local
operator proposed by Wang et al. [43]. The major difference
is that the non-local operator computes the pairwise similar-
ity within the same feature map so as to incorporate global
information, whereas we compute the pairwise similarity
between features of different images and use it to warp the
corresponding color from the reference.

Given that the color warping is not accurate everywhere,
we output the matching confidence map S indicating the
reliability of sampling the reference color for each position
i of xlt:

S(i) = max
j
M(i, j) (5)

In summary, our correspondence network generates two
outputs: warped colorWab and confidence map S:

(Wab,S) = N (xlt, y
lab; θN ) (6)



 

  
 

    

     

 

     

 

   

 

  
 

  

  

     

     
 

Figure 2. The detailed diagram of the proposed network. The correspondence subnet finds the correspondence of of source image xl
t

and reference image ylab in the deep feature domain, and aligns the reference color accordingly. Based on the intermediate result of the
correspondence map along with the last colorized frame, the colorization subnet predicts the color for the the current frame.

Colorization Subnet. The correspondence is not accu-
rate everywhere, thus we employ the colorization network
C which is parameterized by θC , to select the well-matched
colors and propagate them properly. The network receives
four inputs: the grayscale input xlt, the warped color map
Wab and the confidence map S, and the colorized previous
frame x̃labt−1. Given these, this network predicts the predicted
color map x̃abt for the current frame at t:

x̃abt = C(xlt,Wab,S|x̃labt−1; θC) (7)

Along with the luminance channel xlt, we obtain the col-
orized image x̃labt , also denoted as x̃t.

3.3. Loss

Our network is supposed to produce realistic video col-
orization without temporal flickering. Furthermore, the col-
orization style should resemble the reference in the corre-
sponding regions. To accomplish these objectives, we im-
pose the following losses.

Perceptual Loss. First, to encourage the output to be per-
ceptually plausible, we adopt the perceptual loss [44] which
measures the semantic difference between the output x̃ and
the ground truth image x:

Lperc = ‖ΦL
x̃ − ΦL

x‖22 (8)

where ΦL represent the feature maps extracted at the
reluL 2 layer from the VGG19 network. Here we set
L = 5 since the top layer captures mostly semantic informa-
tion. This loss encourages network to select the confident
colors fromWab and propagate them properly.

Contextual Loss. We introduce a contextual loss, to en-
courage colors in the output to be close to those in the refer-
ence. The contextual loss is proposed in [45] to measure the
local feature similarity while considering the context of the
entire image, so it is suitable for transferring the color from
the semantically related regions. Our work is the first to
apply the contextual loss into exemplar-based colorization.
The cosine distances dL(i, j) are first computed between
each pair of feature points ΦL

x̃ (i) and ΦL
y (j), and then nor-

malized as d̃L(i, j) = dL(i, j)/(mink d
L(i, k) + ε), ε =

1e − 5. The pairwise affinities AL(i, j) between features
are defined as:

AL(i, j) = softmax
j

(1− d̃L(i, j)/h) (9)

where we set the bandwidth parameter h = 0.1 as a rec-
ommendation. The affinitiesAl(i, j) range within [0, 1] and
measure the similarity of x̃t(i) and y(j) with the Lth layer
features. Contrary to the backward matching in [45], we
use forward matching where for each feature Φl

x̃,i we find
the closest feature Φl

ỹ,j in y. This is because some objects
in xlt may not exist in y. Consequently, the contextual loss
is defined to maximize the affinities between the result and
the reference:

Lcontext =
∑
l

wL

[
− log

(
1

NL

∑
i

max
j
AL(i, j)

)]
.

(10)
Here we use multiple feature maps: L = 2 to 5. NL denotes
the feature number of layerL. We set higher weightswL for
higher level features as the correspondence is proven more
reliable using the coarse-to-fine searching strategy [31].



Smoothness Loss. We introduce a smoothness loss to en-
courage spatial smoothness. We assume that neighboring
pixels of x̃t should be similar if they have similar chromi-
nance in the ground truth image xt. The smoothness loss is
defined as the difference between the color of current pixel
and the weighted color of its 8-connected neighborhoods:

Lsmooth =
1

N

∑
c∈{a,b}

∑
i

x̃ct(i)− ∑
j∈N(i)

wi,j x̃
c
t(j)


(11)

where wi,j is the WLS weight [46] which measures the
neighborhood correlations. This edge-aware weight helps
to produce edge-preserving colorization and alleviate color
bleeding artifacts.

Adversarial Loss. We also employ an adversarial loss to
constrain the colorization video frames to remain realistic.
Instead of using image discriminator, a video discrimina-
tor is used to evaluate consecutive video frames. We as-
sume that flickering and defective videos can be easily dis-
tinguished from real ones, so the colorization network can
learn to generate coherent natural results during the adver-
sarial training.

It is tricky to stabilize the adversarial training especially
on a large-scale dataset like ImageNet. In this work we
adopt the relativistic discriminator [47] which estimates the
extent in which the real frames (denoted as zt−1 and zt)
look more realistic than the colorized ones x̃t−1 and x̃t. We
adopt the least squares GAN in its relativistic format and
the loss for the generator G is defined as:

LG
adv = E(x̃t−1,x̃t)∼Px̃

[(D(x̃t−1, x̃t)

− E(zt−1zt)∼Pz
D(zt−1, zt)− 1)2]

+ E(zt−1zt)∼Pz
[(D(zt−1, zt)

− E(x̃t−1,x̃t)∼Px̃
D(x̃t−1, x̃t) + 1)2]

(12)

The relative discriminator loss can be defined in a similar
way (see Supplementary Material). From our experiments,
this GAN is better to stabilize training than a standard GAN.

Temporal Consistency Loss. To efficiently consider tem-
poral coherency, we also impose a temporal consistency
loss which explicitly penalizes the color change along the
flow trajectory:

Ltemporal = ‖mt−1(p)�Wt−1,t(x̃
ab
t (p))−mt−1(p)�x̃abt (p)‖

(13)
where Wt−1,t is the forward flow from the last frame xt−1
to xt and mt−1 is the binary mask which excludes the oc-
clusion, and � represents the Hadamard product.

Figure 3. Augmented training images from ImageNet dataset.

L1 Loss. With the above loss functions, the network can
already generate high quality plausible colorized results
given a customized reference. Still, we want the network
degenerate to the case where the reference comes from the
same scene as the video frames. This is a common case for
video colorization applications. In this case, we have the
ground truth of the predicted frame, so add one more L1
loss term to measure the color difference between output x̃t
and the ground truth xt:

LL1 = ‖x̃abt − xabt ‖1 (14)

Objective Function. Combined with all the above losses,
and the overall objective we aim to optimize is:

LI =λpercLperc + λcontextLcontext + λsmoothLsmooth

+ λadvLadv + λL1LL1

(15)

where λ controls the relative importance of terms. With the
guidance of these losses, we successfully unify the corre-
spondence and color propagation within a single network,
which learns to generate plausible results based on the ex-
emplar image.

4. Implementation
Network Structure. The correspondence network in-
volves 4 residual blocks each with 2 conv layers. The col-
orization subnet adopts an auto-encoder structure with skip-
connections to reuse the low-level features. There are 3 con-
volutional blocks in the contractive encoder and 3 convolu-
tional blocks in the decoder which recovers the resolution;
each convolutional block contains 2∼3 conv layers. The
tanh serves as the last layer to bound the chrominance out-
put within the color space. The video discriminator consists
of 7 conv layers where the first six layers halve the input
resolution progressively. Also, we insert the self-attention
block [48] after the second conv layer to let the discrimi-
nator examine the global consistency. We use instance nor-
malization since colorization should not be affected by the
samples in the same batch. To further improve training sta-
bility we apply spectral normalization [49] on both genera-
tor and discriminator as suggested in [48].

Training. In order to cover a wide range of scenes, we use
multiple datasets for training. First, we collect 1052 videos



from Videvo stock [50] which mainly contains animals and
landscapes. Furthermore, we include more portraits videos
using the Hollywood2 dataset [51]. We filter out the videos
that are either too dark or too faded in color, leaving 768
videos for training. For each video clip we provide refer-
ence candidates by inquiring the five most similar images
from the corresponding class in the ImageNet dataset. We
extract 25 frames from each video and use FlowNet2 [52] to
compute the optical flow required for the temporal consis-
tency loss and use the method [53] for the occlusion mask.
To further expand the data category, we include images in
the ImageNet and apply random geometric distortion and
luminance noises to generate augmented video frames as
shown in Figure 3. Thus, we get 70k augmented videos in
diverse categories. To suit the standard aspect ratio 16:9, we
crop all the training images to 384× 216. We occasionally
provide the reference which is the ground truth image itself
but insert Gaussian noise, or feature noise to the VGG fea-
tures before feeding them into the correspondence network.
We deliberately cripple the color matching during training,
so the colorization network better learns the color propaga-
tion even when the correspondence is inaccurate.

We set λperc = 0.001, λcontext = 0.2, λsmooth = 5.0,
λadv = 0.2, λflow = 0.02 and λL1 = 2.0. We use a
learning rate of 2 × 10−4 for both generator and discrim-
inator without any decay schedule and train the network
using the AMSGrad solver with parameters β1 = 0.5 and
β2 = 0.999. We train the network for 10 epochs with a
batch size of 40 pairs of video frames.

5. Experiments
In this section, we first study the effectiveness of indi-

vidual components in our method. Then, we compare our
method with state-of-the-art approaches.

5.1. Ablation Studies

Correspondence Learning. To demonstrate the impor-
tance of learning parameters in the correspondence subnet,
we compare our method with nearest neighbor (NN) match-
ing, in which each feature point of the input image will be
matched to the nearest neighbor of the reference feature.
Figure 4 shows that our learning-based method matches
mostly correct colors from the reference and eases color
propagation for the colorization subnet.

Analysis of Loss Functions. We ablate the loss functions
individually and evaluate their importance, as shown in Fig-
ure 5. When we remove Lperc, the colorization fully adopts
the color from the reference, but tends to produce more ar-
tifacts since there is no loss function to constrain the out-
put semantically similar to the input. When we remove
Lcontext, the output does not resemble the reference style.
When Lsmooth is ablated, colors may not be fully propa-

Input images Warped color image Colorized result

Figure 4. First row: nearest neighbor matching. Second row:
with learning parameters in the correspondence network. The first
columns list the grayscale image and reference image respectively.
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Figure 7. Quantitative comparison on video color propagation.
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Figure 8. User study results.

gated to the whole coherent region. Without Ladv , the color
appears washed out and perceptually unrealistic. This is
because color warping is not accurate and the final output
becomes the local color average of the warping color. In
comparison, our full model produces vivid colorization with
fewer artifacts.

5.2. Comparisons

Comparison on Image Colorization. We compare our
method against recent learning based image colorization
methods both quantitatively and qualitatively. The base-
line methods include three automatic colorization methods
(Iizuka et al. [15], Larsson et al. [16] and Zhang et al. [17])



Input image Reference w/o Lperc w/o Lcontext w/o Lsmooth w/o LGAN Full

Figure 5. Ablation study for different loss functions.

Input Reference Ours [54] [15] [16] [17]

Figure 6. Comparison on image colorization with state-of-the-art methods.

Top-5
Acc(%)

Top-1
Acc(%)

FID Colorful Flicker

GT 90.27 71.19 0.00 19.1 5.22
[15] 85.03 62.94 7.04 11.17 7.19/5.69+
[16] 84.76 62.53 7.26 10.47 6.76/5.42+
[17] 83.88 60.34 8.38 20.16 7.93/5.89+
[30] 85.08 64.05 4.78 15.63 NA

Ours 85.82 64.64 4.02 17.90 5.84

Table 1. Comparison with image and per-frame video colorization
methods (image test dataset: ImageNet 10k and video test dataset:
Videvo.)

and one exemplar based method (He and Chen et al. [30])
since these methods are regarded as state-of-the-art.

For the quantitative comparison, we test these methods
on 10k subset of the ImageNet dataset, as shown in Table 1.
For exemplar based methods, we take the Top-1 recommen-
dation from ImageNet as the reference. First, we measure
the classification accuracy using the VGG19 pre-trained on
color images. Our method gives the best Top-5 and Top-1
class accuracy, indicating that our method produces seman-
tically meaningful results. Second, we employ the Fréchet
Inception Distance (FID) [55] to measure the semantic dis-

tance between the colorized output and the realistic natural
images. Our method achieves the lowest FID, showing that
our method provides the most realistic results. In addition,
we measure the colorfulness using the psychophysics metric
from [56] due to the fact that the users usually prefer col-
orful images. Table 1 shows that Zhang et al.’s work [17]
produces the most vivid color since it encourages rare col-
ors in the loss function; however their method tends to pro-
duce visual artifacts, which are also reflected in FID score
and the user study. Overall, the results of our method,
though slightly less vibrant, exhibit similar colorfulness to
the ground truth. The qualitative comparison (in Figure 6)
also indicates that our method produces the most realistic,
vibrant colorization results.

Comparison with Automatic Video Colorization. In
this experiment, we test video colorization on 116 video
clips collected from Videvo. We apply the learning based
methods for video colorization. It is too costly to use the
method in [30] (> 30s whereas 0.61s in our method), so
we exclude it in this comparison. The quantitative com-
parison is included in Table 1. We also apply the method
proposed in [22] which takes per-frame colorized videos
and generate temporally consistent results. We denote these
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Figure 10. Comparison of automatic video colorization.

post-processed outputs with + in Table 1. We measure the
temporal stability using Eq. 13 averaged over all frame pairs
in the results. A smaller temporal error represents less flick-
ering. The post-processing method [22] significantly re-
duces the temporal flickering while our method produces
a comparably stable result. However, their method [22] de-
grades the visual quality since the temporal filtering intro-
duces blurriness. As shown in the example in Figure 10,

our method exhibits vibrant colors in each frame with sig-
nificantly fewer artifacts compared to other methods. Mean-
while, the successively colorized frames demonstrate good
temporal consistency.

Comparison with Color Propagation Methods. In or-
der to show that our method can degenerate to the case
where the reference is a colored frame for the video it-
self, we compare it with two recent color propagation meth-
ods: VPN [26] and STN [28]. We also include optical flow
based color propagation as a baseline. Figure 7 shows the
PSNR curve with frame propagation tested on the DAVIS
dataset [57]. Optical flow provides the highest PSNR in the
initial frames but deteriorates significantly thereafter. The
methods STN and VPN also suffer from PNSR degrada-
tion. Our method with L1 loss attains a most stable curve,
showing the capability for propagating to longer frames.

User Studies. We first compare our video colorization
with three methods of per-frame automatic video coloriza-
tion: Larsson et al. [16], Zhang et al. [17] and Iizuka et
al. [15]. We used 19 videos randomly selected from the
Videvo test dataset. For each video, we ask the user to rank
the results generated by these four methods in terms of tem-
poral consistency and visual photorealism. Figure 8 (left)
shows the results based on the feedback from 20 users. Our



approach is 50.66% more likely to be chosen as the 1st-
rank result. Secondly, we compare against two video prop-
agation methods: VPN [26] and STN [28] on 15 randomly
selected videos from the DAVIS test dataset. For a fair com-
parison, we initialize all three methods with the same col-
orization result of the first frame (using the ground truth
video). Figure 8 (right) shows the survey results. Again, our
method achieved the highest 1st-rank percentage at 79.67%.

6. Conclusion
In this work, we propose the first exemplar-based video

colorization. We unify the semantic correspondence and
colorization into a single network, training it end-to-end.
Our method produces temporal consistent video coloriza-
tion with realistic effects. Readers could refer to our sup-
plementary material for more quantitative results.
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