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Acquiring Reflectance and Shape from Continuous Spherical Harmonic Illumination
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(a) Acquisition Setup (b) Reflectance Maps ρd , ρs, ns, α (c) Rendered 3D Model

Figure 1: (a) A pair of sunglasses lit by continuous spherical harmonic illumination (harmonic y−2
3 (ω)) in our capture setup. (b) Recovered

diffuse, specular, specular normal, and specular roughness maps. (c) A rendering of the sunglasses with geometry and reflectance derived
from the SH illumination and multiview reconstruction.

Abstract

We present a novel technique for acquiring the geometry and
spatially-varying reflectance properties of 3D objects by observing
them under continuous spherical harmonic illumination conditions.
The technique is general enough to characterize either entirely spec-
ular or entirely diffuse materials, or any varying combination across
the surface of the object. We employ a novel computational illu-
mination setup consisting of a rotating arc of controllable LEDs
which sweep out programmable spheres of incident illumination
during 1-second exposures. We illuminate the object with a succes-
sion of spherical harmonic illumination conditions, as well as pho-
tographed environmental lighting for validation. From the response
of the object to the harmonics, we can separate diffuse and specular
reflections, estimate world-space diffuse and specular normals, and
compute anisotropic roughness parameters for each view of the ob-
ject. We then use the maps of both diffuse and specular reflectance
to form correspondences in a multiview stereo algorithm, which al-
lows even highly specular surfaces to be corresponded across views.
The algorithm yields a complete 3D model and a set of merged
reflectance maps. We use this technique to digitize the shape and
reflectance of a variety of objects difficult to acquire with other
techniques and present validation renderings which match well to
photographs in similar lighting.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Digitizing and scanning;

Keywords: specular scanning, spherical illumination, spherical
harmonics

Links: DL PDF

1 Introduction

Digitally recording realistic models of real-world objects is a long-
standing problem in computer graphics and vision, with applica-
tions in online commerce, industrial design, visual effects, and in-
teractive entertainment. Some of the most successful techniques
use a combination of 3D scanning and photography under differ-
ent lighting conditions to acquire models of an object’s shape and
reflectance. When both of these characteristics are measured, the
models can be used to render how the object would look from any
viewpoint, reflecting the light of any environment, allowing the dig-
ital model to represent the object faithfully in a virtual world.

Acquiring the shape of an object independent of its reflectance
characteristics is a largely solved problem. Active illumination
techniques such as structured light scanning can record the shape
of an object as long as it has a diffuse component, and passive
stereo can obtain robust results as long as the object has surface
texture. Unfortunately, these techniques alone do not record the re-
flectance properties of the surfaces being scanned, and cannot work
on smooth shiny objects unless the reflectance is modified through
dulling spray or powder coating.

Acquiring the reflectance properties of an object means measure
its spatially-varying BRDF (SVBRDF) [Mcallister 2002], or Bidi-
rectional Texture Function (BTF) [Dana et al. 1999]. The problem
with directly acquiring an SVBRDF is that a very large number
of photographs is required to observe the object from all possible
angles and lighting directions. Practical simplifications of the prob-
lem such as Sato et al. [1997] and Lensch et al. [2003] observe
the object from a tractably sparse set of viewpoints and lighting
conditions, and assume that BRDFs change smoothly across re-
gions to extrapolate the measurements to full SVBRDFs. However,
such techniques fail to record the BRDF independently at each sur-
face point, meaning that interesting reflectance information could
be missed at various places, and that two scans of the same object
could yield significantly different models of the surface reflectance.

The largest challenge to efficient SVBRDF acquisition is that many
materials exhibit sharp specular reflections which require very
many observations to characterize using point light reflectometry
techniques. If a point on an object is shiny, the specular highlight
will only be observed close to the reflection vector, so many such
angles must be observed. Extended light sources (e.g. [Ikeuchi
1981; Nayar et al. 1990; Gardner et al. 2003]) can be used effec-
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tively to excite more specular reflection directions at once, and they
also reduce the brightness disparity between diffuse and specular
reflections. Drawbacks remain, however, in that these techniques
typically acquire less information about the shape of the specular
lobe, or are limited to recording reflectance for a limited range of
surface normals, or still require hundreds of images to observe the
specular characteristics. In addition, shiny surfaces which lack a
diffuse component, such as polished metal or tinted glass, pose sig-
nificant problems for 3D reconstruction with either structured light
or stereo correspondence techniques.

In this work, we present an improved practical acquisition and
analysis approach for digitizing the shape and reflectance of ob-
jects with spatially-varying BRDFs, including completely diffuse
or specular surfaces, including mirror-like specularity. We do this
with a tractable number of images by using continuous spherical
harmonic illumination patterns generated by a semicircular arm of
LEDs which traces out spherical lighting patterns during each ex-
posure. We show that spherical harmonic lighting can be used to
separate diffuse and specular reflections, to measure diffuse and
specular albedo and surface orientation, and that higher orders re-
sponses can be used to characterize the shape of both isotropic and
anisotropic specular reflections independently at each point. Fur-
thermore, we show that the surface orientation measurements al-
low specular surfaces to be used in the context of multiview stereo
geometry reconstruction in the same manner as diffuse surfaces,
allowing the shape and reflectance of objects such as sunglasses,
metallic parts, and glossy figurines to be digitized in the same
straightforward manner.

In summary, the principal contributions of this work are:

• A novel computational illumination system for illuminating an
object with high-resolution continuous spherical lighting condi-
tions.

• The use of spherical harmonic illumination conditions for dif-
fuse and specular reflectance component separation.

• A method of using higher-order spherical harmonics to measure
the albedo, reflection vector, roughness, and anisotropy param-
eters of a specular reflectance lobe.

• A multi-view stereo algorithm which uses both diffuse and
specular albedo and surface orientation measurements for high-
quality geometry reconstruction.

2 Related work

An extensive body of work in the graphics and vision literature ad-
dresses the acquisition of geometry and reflectance from images
under controlled and uncontrolled lighting conditions. Two recent
overviews are Weyrich et al. [2009], which covers a wide variety of
techniques for acquiring and representing BRDFs and SVBRDFs
over object surfaces, and Ihrke et al. [2010], which focused on
the acquisition of purely specular and transparent objects. In the
following, we highlight some of the most relevant work in cap-
turing opaque objects with spatially-varying diffuse and specular
reflectance components.

Spatially Varying BRDF Capture SVBRDFs can be captured
exhaustively using point light sources (e.g. [Dana et al. 1999;
Mcallister 2002]), but this requires a large number of high-dynamic
range photographs to capture every possible combination of inci-
dent and radiant angle of light. Similar to our approach, many
techniques (e.g. [Debevec et al. 2000; Gardner et al. 2003; Hol-
royd et al. 2008; Ren et al. 2011]) look instead at BRDF slices
of spatially-varying materials observed from a single viewpoint to
infer parameters of a reflectance model, which can be used to ex-
trapolate reflectance to novel viewpoints. Other approaches [Sato

et al. 1997; Lensch et al. 2003; Zickler et al. 2006] use sparse sets of
viewpoint and lighting directions and extrapolate BRDFs per sur-
face point assuming that the reflectance varies smoothly over the
object. This approach is also used by Dong et al. [2010], which
employs a dedicated BRDF measurement system to sample repre-
sentative surface BRDFs, which are extrapolated to the surface of
the entire object based on its appearance under a moderate number
of environmental lighting conditions. None of these techniques,
however, produces independent measurements of diffuse and spec-
ular reflectance parameters for each observed surface point, and
thus may miss important surface reflectance detail. Holroyd et
al. [2010] describes a complete system for high-precision shape
and reflectance measurement of 3D objects using a pair of co-axial
camera-projector units. Their setup uses phase-shifted structured
light leveraging Helmholz reciprocity [Zickler et al. 2002] for high-
quality geometry estimation of nonconvex objects, and a cluster-
ing technique to derive SVBRDFs across object surfaces from a
relatively sparse sampling of viewpoints. While their system can
produce high-quality results for many objects, it would likely have
trouble estimating geometry and reflectance where sharp specular
reflections are dominant, such as sunglasses lenses.

Using Extended Light Sources Ikeuchi [1981] extended the
original photometric stero approach of Woodham [1980] to spec-
ular surfaces, using a set of angularly varying area light sources
to estimate the specular surface orientation. Nayar et al. [1990]
used an extended light source technique to measure orientations of
hybrid surfaces with both diffuse and specular reflectance, but they
did not characterize the BRDF of the specular component. Gardner
et al. [2003] employed a moving linear light source to derive BRDF
models of spatially-varying materials, including highly specular
materials, but still required hundreds of images of the moving light
to record sharp reflections. Hawkins et al. [2005] recorded diffuse
and specular reflectance behavior of objects with high angular res-
olution using a surrounding spherical dome and a laser to excite the
various surface BRDFs through Helmholz reciprocity, but achieved
limited spatial resolution and required a high-powered laser equip-
ment. Recently, Wang et al. [2011] used step-edge illumination to
estimate dual scale reflectance properties of highly glossy surfaces,
but did not estimate per-pixel BRDFs.

Reflectance from Spherical Illumination Ma et al. [2007] used
spherical gradient illumination representing the 0th and 1st order
spherical harmonics in an LED sphere to perform view-independent
photometric stereo for diffuse and/or specular objects, and used po-
larization difference imaging to independently model diffuse and
specular reflections of faces. Ghosh et al. [2009] extended this
approach by adding 2nd order spherical harmonics to estimate spa-
tially varying specular roughness and anisotropy at each pixel. Un-
fortunately, the use of an LED sphere with limited resolution made
the reflectance analysis applicable only to relatively rough specular
materials such as human skin, and the use of polarization for com-
ponent separation becomes complicated for metallic surfaces and
near the Brewster angle. To avoid using polarization for reflectance
component separation, Lamond et al. [2009] modulated gradient
illumination patterns with phase-shifted high-frequency patterns to
separate diffuse and specular reflections and measure surface nor-
mals of 3D objects. Our work reformulates and generalizes this
frequency-based component separation approach to increasing or-
ders of spherical harmonic illumination. Noting that BRDFs can
usefully represented by spherical harmonic functions (e.g. [Westin
et al. 1992]), Ghosh et al. [2010] used spherical harmonic illumi-
nation projected to a zone of a hemisphere for reflectance measure-
ment, but only for single BRDFs from flat samples. Their approach
also did not separate diffuse and specular reflectance using the mea-
surements and required very high orders of zonal basis function to
record sharp specular reflectance. Instead, in this work we propose
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employing up to 5th order spherical harmonics for both diffuse-
specular separation as well as estimating reflectance statistics such
as specular roughness and anisotropy.

Geometry from Specular Reflection Highly specular objects
have long posed problems for image-based shape reconstruc-
tion [Blake and Brelstaff 1992]. Bontford and Strum [2003] pro-
posed a multi-view voxel carving technique based on reflected ob-
servations of a calibrated world pattern, but achieved very low reso-
lution results. Tarini et al. [2005] proposed an alternate shape from
distortion approach for high resolution reconstruction. Using a CRT
screen as an extended light source, they illuminate a specular object
with several stripe patterns to obtain first a matte and then iteratively
solve for the depth-normal ambiguity. Chen et al. [2006] propose
measuring mesostructure from specularity using a hand held light
source that is waved around while a camera observes the moving
specular highlights on the sample to estimate its surface normals.
Francken et al. [2008] propose measuring surface mesostructure
instead by using a set of calibrated gray codes projected from an
LCD panel in order to localize the surface normal of each surface
point. These techniques work well in principle but are limited to
scanning small flat objects that are covered by the illumination from
an extended source. Adato et al. [2007] have proposed an alternate
approach for shape reconstruction by formulating a set of coupled
PDEs based on observed specular flow at a specific surface point.
They also derive a simple analytic formulation for a special case of
camera rotation about the view axis. While having the advantage
of not requiring control over the incident illumination, in practice
the method yields only very simple shape reconstructions. In con-
trast, our technique combines cues from both diffuse and specular
reflectance information to derive high-fidelty geometric models for
many common types of objects.

3 Setup and Acquisition

(a) Light arc, object, and cameras

(b) Exposure for one rotation (c) Object lit by sphere of light

Figure 2: Spinning Spherical Reflectance Acquisition Apparatus

Our lighting apparatus is designed to illuminate an object at its
center with any series of continuous spherical incident illumination

Figure 3: Cross-section of the LED arm and plots of measured
vertical intensity profiles for six of the 105 LEDs (blue curves) and
the nearly constant intensity achieved along the arm with all LEDs
driven to equal intensity (red curve).

conditions. The light is produced by a 1m diameter semi-circular
arc (Fig. 2, a) of 105 white LEDs (Luxeon Rebels) which rotates
about its central vertical axis using a motion control motor. As seen
in cross-section in 3, each LED is focused toward the center with
a clear plastic optical element which is aimed through two spaced-
apart layers of diffusion. The diffusion allows the LEDs to form a
smooth arc of light when they are all on, but baffles between the
optics help each LED have only a local effect on the arc (top graphs
in Fig. 3). Since the arc spins through space more slowly near
its top and bottom than at the equator, it would naturally produce
more light per solid angle near the poles than from the equator. To
counteract this, a curved aperture slit is applied to the arc which is
1cm wide at the equator and tapers toward 0cm wide at the poles
proportional to the cosine of the angle to the center.

The object to be scanned sits on a small platform at the center of
the arc. The platform is motorized to rotate around the vertical
axis yielding additional views of the object. Typically, the object
is rotated to eight positions, 45 degrees apart. One version of the
platform is a dark cylinder which can light up from LEDs mounted
inside it; this version can measure an additional transparency map
for objects such as eyeglasses.

In front of the object and outside the arm is an array of five machine
vision cameras (PointGrey Grasshopper 2.0)(Fig. 2, c) arranged in
a plus sign configuration, with each camera being spaced about fif-
teen degrees apart from its neighbor(s). Each camera has a narrow
field of view lens framed and focused on the object.

In this work, we spin the arm at one revolution per second during
which the intensities of the 105 LEDs are modulated to trace out
arbitrary spherical illumination environments. Differences in LED
intensity due to manufacturing are compensated for by calibrating
the intensity of each LED as reflected in a chrome ball placed in the
center of the device. We use pulse width modulation to achieve 256
levels of intensity with 400 divisions around the equator, allowing a
resolution of 400× 105 pixel lighting environments to be produced.
We expose each of the cameras for the full second of each rotation
to record a full sphere of incident illumination as the arc rotates
(Fig. 2, b). Additionally, we do one rotation pass where the object
is only illuminated from the back and dark on the front in order to
obtain masks for visual hull for subsequent stereo processing. The
use of a spinning arm largely eliminates problematic interreflec-
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tions which would occur if one were to surround the object with a
projection surface.

Our spherical lighting patterns minimize the brightness disparity
between diffuse and specular reflections compared to techniques
with more concentrated illumination sources: a perfectly specular
sphere and perfectly diffuse sphere of the same albedo appear the
same brightness under uniform light. Nonetheless, to optimally es-
timate reflectance properties of both high albedo and low albedo
surfaces with low noise, we employ high dynamic range photogra-
phy with 3 exposures per lighting condition, one and a half stops
apart.

The motion of the arc creates a vertical sliver of reflection occlu-
sion when it passes in front of each camera (see the dark line down
the center of the sphere in Fig. 2, d). In processing, we estimate
this missing reflectance information from data in the neighboring
views. Typical datasets in this work are captured in approximately
ten minutes.

4 Reflectometry from Spherical Harmonics

This section describes our algorithm to estimate per-pixel re-
flectance parameters for a single viewpoint of an object observed
under SH illumination functions ym

l (ω) = ym
l (x, y, z) up to 5th order

where ω is the unit vector (x, y, z) (Fig. 4). We assume a tradi-
tional reflectance model consisting of a Lambertian diffuse lobe
D and a specular lobe S with roughness and anisotropy. Holding
the view vector fixed, we parameterize the reflectance functions
D(ω) and S(ω) by the unit vector ω indicating the incident illu-
mination direction. Of course, we do not observe D(ω) and S(ω)
directly, but rather the responses of their sum f (ω) = D(ω) + S(ω)
to the SH illumination functions. We denote these reponses
f m
l =

∫
Ω

f (ω)ym
l (ω) dω.

l=0

l=1

l=2

l=3
m=−3 m=−2 m=−1 m=0 m=1 m=2 m=3

Figure 4: The spherical harmonic functions ym
l (ω) up to 3rd order,

seen from the top as reflected in a mirrored sphere, with x = y = 0
and z = 1 in the center. Positive values are shown in magenta and
negative values are shown in green. Each harmonic locally resem-
bles the harmonic above it around x = y = 0.

A key to our reflectometry technique is the observation by Ra-
mamoorthi and Hanrahan [2001] that a Lambertian diffuse lobe
exhibits the vast majority of its energy in only the 0th, 1st, and 2nd-
order spherical harmonic bands. We observe that this implies that
the 3rd order SH coefficients and above respond only to the specular
lobe S(ω), so that Sm

l ≈ f m
l for l ≥ 3, as seen in Fig. 5. We then es-

timate the specular lobe’s albedo, reflection vector, roughness, and
anisotropy parameters from the higher order responses by compar-
ing to the higher-order responses of lobes from a reflectance model
such as [Ward 1992]. From the specular reflectance parameters, we
can estimate the responses S0

0, Sm
1 of the specular lobe to the lower-

order harmonics, and subtract this response from the observations

D

S

D+S
lobe l=0 l=1 l=2 l=3 l=4 l=5

Figure 5: Responses of diffuse D, specular S, and mixed D + S
reflectance lobes to the first six zonal harmonics y0

l (ω); negative
values are shown in absolute value. (Non-zonal responses are 0).
Above second order, the diffuse response is small and the higher
order responses to the mixed lobe closely match the response to the
specular lobe on its own.

to estimate the response of just the diffuse lobe D(ω) to the 0th
and 1st order harmonics D0

0, Dm
1 . From those, we can estimate the

diffuse albedo and diffuse surface normal as in [Ma et al. 2007],
yielding a complete model of diffuse and specular reflectance per
pixel from a small number of observations. Specifically, our re-
flectance measurement process is as follows:

4.1 Acquiring Spherical Harmonic Responses

We use our acquisition setup to acquire the responses of the ob-
ject to the thirty-six SH illumination conditions up to the 5th order.
Since the device cannot produce negative light, we offset and scale
the SH functions above 0th order to produce two lighting patterns,
one with pixel values between 0 and 255 and a complementary con-
dition with pixel values from 255 to 0. The difference of these two
images yields the response to the spherical harmonic. One could
acquire fewer images by using the harmonics scaled 0 to 255, but
our approach distributes camera noise more evenly throughout the
range of intensities.

4.2 Building the Reflectance Table

We compute the response of our chosen reflectance model’s specu-
lar lobe to the SH illumination basis over its range of valid rough-
ness values. In this work, we arbitrarily choose the Ward [1992]
model’s specular lobe f s

α1,α2
and choose anisotropic roughness pa-

rameters α1 ≥ α2 ranging from 0 (perfectly sharp) to 0.35 (very
rough) in increments of 0.005. We view the surface at normal in-
cidence along the z-axis, choose a unit specular albedo ρs = 1, and
align the axis of anisotropy to 0 degrees along the x-axis. We then
numerically integrate the lobes against the SH basis to determine
the coefficient table Rm

l (α1,α2) for each order l across the range of
α.

The response of the lobes to the SH basis has useful properties
for reflectance measurement. Since isotropic lobes are radially
symmetric, only the zonal SH basis functions y0

l yield a nonzero
response when α1 = α2. Even when the lobe is anisotropic, it is
symmetrical across both the x and y axes in that f s

α1,α2
(x, y, z) =

f s
α1,α2

(±x,±y, z) so its response to the basis functions y±1
l (for l ≥

1) are both zero since y−1
l (x, y, z) = −y−1

l (−x, y, z) and y1
l (x, y, z) =

−y1
l (x,−y, z) (seen in Fig. 4). Furthermore, the response to the

basis functions y−2
l (for l ≥ 2) are zero since they also have the

property y−2
l (x, y, z) = −y−2

l (−x, y, z). The responses to y2
l will be

nonzero, however, when the lobe is anisotropic, since for small
x and y, y2

l (x, y, z) is positive when |x| < |y| and negative when
|x| > |y|, so lobes stretched more along x will have a negative
response and lobes stretched more along y will have a positive re-
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Figure 6: Plots of the responses R0
l (α,α) (with l = 0 in black)

of an isotropic specular lobe to the first six zonal harmonics y0
l as

roughness increases from α = 0 to α = 0.35. The dotted line plots
the ratio R0

3/R0
5 which is used in determining specular roughness.

Figure 7: The rendered reflectance tables which map measured
responses (u, v) = ( f 0

5 / f 0
3 , f 2

3 / f 0
3 ) back to anisotropic roughness

values α1 (left) and α2 (right).

sponse to y2
l . We will use this response to measure the anisotropy

of the observed specular lobes.

Fig. 6 shows the reflectance data R0
l (α1,α2) for 0 ≤ l ≤ 5 for

isotropic lobes where α1 = α2. In practice, the elements of interest
in our reflectance table R are the zonal responses R0

3 and R0
5 (for

roughness) and the tessoral response R2
3 (for anisotropy). When

measured from a real surface, they will all be scaled by the unknown
specular albedo ρs, so we divide each of them by R0

3 to obtain the
two independent measurements u = R0

5/R0
3 and v = R2

3/R0
3 which

generally correlate with specular roughness and anisotropy, respec-
tively, as will be discussed further in Sec. 4.4 and Sec. 4.5.

Our calculations tell us values (u, v) for given values (α1,α2).
When it is time for reflectance measurement, we will need to evalu-
ate the inverse of this mapping. Fortunately, the mapping is smooth
and monotonic over our ranges of roughness, which allows us to
construct a fast inverse table lookup. For each of α1 and α2, we
scan convert the mesh of the values they take on into the range of
(u, v) (Fig. 7). Then, when we measure values u and v, we can
quickly look up the anisotropic roughness parameters α1 and α2 to
which they correspond.

4.3 Estimating the Specular Surface Normal

The specular lobe of our pixel’s reflectance function will be cen-
tered around a reflection vector r, implying a specular surface nor-
mal ns halfway between r and the view vector. We search for this
specular peak to be located at the maximum of the l = 3 order SH
reconstruction of the function:

r = arg max
ω

l

∑
m=−l

f 3
m y3

m(ω) (1)

Since we assume the specular lobe is relatively narrow, we note that
rotating the lobe to align with the zonal +z axis will maximize its
response to the zonal harmonic y0

3, which assumes its global max-
imum along the +z axis. Around this same location, all other SH

functions of the third order are close to zero. Thus, we observe that
a narrow specular lobe’s projection into the 3rd order SH basis will
resemble a rotated version of the 3rd order zonal harmonic itself,
and thus will have a clear global maximum.

Since finding where the SH reconstruction of a function attains
its maximum is complicated to perform analytically, we use the
quick-to-converge hill climbing approach of Sloan [2008] to find
r starting from six possible initial estimates. From r, we can calcu-
late the world-space surface normal ns, and can rotate the other SH
responses f m

l using the (2l + 1)× (2l + 1) SH rotation matrices so
that the reconstructed specular lobe aligns with the zonal +z axis,
yielding a set of rotated SH coefficients f̂ m

l .

4.4 Estimating the Angle of Anisotropy

The responses f̂ m
l now measure the lobe as if it were aligned with

the zonal axis, but if the lobe is anisotropic, the angle of anisotropy
ψ could be anywhere. We would like to determine this angle, and
further rotate the harmonics around the zonal axis to align the di-
rection of anisotropy with the x axis so that it will match with our
reflectance table. To measure the angle of anisotropy of a distribu-
tion g(x, y) centered about the origin, one typically computes the
covariances s =

∫
g(x, y)(x2 − y2)dxdy and t =

∫
g(x, y)(2xy)dxdy,

where s characterizes the spread of values along the x-axis versus
the y-axis and t characterizes the spread of values along versus the
x = y diagonal versus the x = −y diagonal. Then, the angle of
anisotropy can be found as 1

2 tan−1(s/t).

Conveniently, we observe that the f̂−2
3 and f̂ 2

3 harmonic responses
essentially perform these integrations for us (visualized in Fig. 8),
up to a scaling factor, since from the spherical harmonic formulae
in the neighborhood of the zonal peak z = 1 are:

y−2
3 (x, y, z) =

1
4

√
105

π
2xyz ≈ 1

4

√
105

π
2xy (2)

and

y2
3(x, y, z) =

1
4

√
105

π
(x2 − y2)z ≈ 1

4

√
105

π
(x2 − y2) (3)

Thus, the angle of anisotropy can be computed as
ψ = 1

2 tan−1( f̂ 2
3 / f̂−2

3 ). If we were to rotate the harmonic responses

around the z axis by ψ to form ˆ̂f m
l , we note that the ˆ̂f−2

3 response

becomes zero and the ˆ̂f 2
3 response becomes

√
( f̂−2

3 )2 + ( f̂ 2
3 )

2.
We have simply calculated the angle and magnitude of the vector
( f̂−2

3 , f̂ 2
3 ). This magnitude is our indication of how anisotropic the

specular lobe is relative to its roughness.

S(x, y) S(x, y)ŷ−2
3 S(x, y)ŷ2

3 S(x, y)ŷ0
3 S(x, y)ŷ0

5
Figure 8: Responses of an anisotropic lobe S to the rotated SH
functions ŷm

l whose responses together determine estimates of the
anisotropic angle ψ, roughnesses α1 and α2, and the specular
albedo ρs.
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4.5 Estimating Roughness and Anisotropy

Ideally, to measure the roughness of the rotated specular lobe
ˆ̂S(x, y, z), we would compute its second moment as the following
integral: ∫

ˆ̂S(x, y, z)(x2 + y2)dxdy (4)

Notably, the zonal harmonics for l > 1 perform something similar
to this integration, visualized in the right images of Fig. 8. For
example, for l = 3, near the apex z = 1:

y0
3(x, y, z) =

1
4

√
7
π

z(2− (x2 + y2)) ≈ 1
2

√
7
π
− 1

4

√
7
π
(x2 + y2)

(5)

Thus the zonal harmonic approximation has an (x2 + y2) term but
also a constant term. If we knew the response of the specular lobe
S to the 0th order harmonic y0

0, we could subtract off the response
to the constant term. Unfortunately, we only know the response of
y0

0 to D + S. To resolve this problem, we can look to a higher zonal
harmonic we capture such as y0

5:

y0
5(x, y, z) =

1
16

√
11
π

z(8− 56(x2 + y2) + 63(x4 + 2x2y2 + y4))

(6)

≈ 1
2

√
11
π
− 7

2

√
11
π
(x2 + y2) (7)

To make this approximation, we set the 4th order terms to zero (and
drop z ≈ 1). This approximation also contains a constant term and
an (x2 + y2) term, with linearly independent coefficients from the
y0

3, approximation, meaning that one can theoretically determine
the integral of the specular lobe S against the constant term and the
(x2 + y2) term from the responses ˆ̂f 0

3 and ˆ̂f 0
5 , yielding measures of

the specular lobe’s albedo and roughness.

However, since these polynomial expansions are approximate, and
since our reflectance model’s parameters may or may not relate
closely to these same measures of roughness and anisotropy, we
employ a lookup table to determine which specular model param-
eters will produce the same responses as we find in our captured
data. But the derivations above explain why the measurements we
seek are contained in the available data.

We return to our reflectance function’s rotated SH responses ˆ̂f 0
3 ,

ˆ̂f 0
5 , and ˆ̂f 2

3 . As discussed earlier in Sec. 4.2, these will all be
proportionately scaled by the specular albedo, so we normalize
them by dividing by the 3rd order zonal response ˆ̂f 0

3 to obtain

(u, v) = ( ˆ̂f 0
5 /

ˆ̂f 0
3 ,

ˆ̂f 2
3 /

ˆ̂f 0
3 ). From the precomputed reflectance table

of Sec. 4.2, look up which anisotropic roughness parameters α1
and α2 yield a specular lobe in our reflectance model which has the
same response to the rotated harmonics.

Note that we could in principle similarly use the 4th order zonal
harmonic y0

4 instead of the 5th order harmonic. In practice, we pre-
fer the 5th order harmonic because of it provides a greater contrast
to the 3rd order measurement and hence better conditioned meau-
rements. Also, the 4th order measurement, being an even order
harmonic, still has some diffuse response in the signal making it
less suitable for this purpose than the the 5th order measurement
(Fig. 5).

4.6 Estimating Specular Albedo

As shown above, the responses ˆ̂f 0
3 and ˆ̂f 0

5 of our specular lobe to the
rotated zonal harmonics contain information about both specular
roughness and albedo. With the roughness values α1 and α2 deter-
mined, we refer to our tabulation R (Fig. 6) to determine the 3rd
order zonal response to a unit specular albedo lobe with our lobe’s
roughness parameters. Dividing our lobe’s 3rd order zonal response
yields our estimate of the specular albedo ρs =

ˆ̂f 0
3 /R0

3(α1,α2).

4.7 Estimating Diffuse Albedo and Normal

We have now fully characterized our specular lobe with specular
albedo ρs, normal ns, angle of anisotropy ψ, and anisotropic rough-
ness parameters α1 and α2. From ρs, α1, and α2, we can deter-
mine the 0th and 1st order responses to our lobe from the table
Rm

l (α1,α2). We use spherical harmonic rotation to rotate the 1st
order responses by the angle ψ around the z axis and then rotate to
align the lobe’s center to the reflection vector from the view vec-
tor to ns. We subtract these rotated responses ρsR̂m

l (α1,α2) from
our observations f m

l (which include the response to both the dif-
fuse and specular lobes) to estimate the response to the diffuse
lobe on its own. From the 0th and 1st order responses Dm

l to the
diffuse lobe, it is straightforward to estimate the diffuse normal
nd as (D−1 1,D0

1,D1
1) (which should be normalized) and albedo as

1
π

D0
0/y0

0, where the 1
π

factor divides out the integral of a unit Lam-
bertian lobe over the sphere and y0

0 is the constant value of the 0th

order harmonic 1
2

√
1
π

.

4.8 Reflectometry Discussion

We do not consider the effect of Fresnel gain, which makes graz-
ing lobes considerably brighter. This could be accounted for using
the Fresnel terms from a physically based reflectance model and
estimates of the index of refraction of the materials. In our setup,
we capture enough viewpoints to view most surface normals at an
angle where Fresnel gain is minor, and our map merging process
assigns frontal reflectance data the highest weight.

Our technique for measuring roughness and anisotropy is different
from Ghosh et al. [2009], which uses only the 2nd order harmonics
for reflectance analysis. They require diffuse reflection to be elimi-
nated though polarization difference imaging, and integrate against
the equatorial region of the zonal harmonic rather than the zonal
peaks. We believe our technique is more general since it can be ap-
plied to higher-order harmonics (which exclude diffuse reflections
without polarization) and can obtain better-conditioned estimates of
sharp specular behavior.

5 Geometry Reconstruction from Diffuse and
Specular Reflections

Once the reflectance maps are acquired and processed for each of
the viewpoints, we have estimates of the spatially varying diffuse
and specular albedo and diffuse and specular normal maps (which
correspond to diffuse and specular reflected directions on the illu-
mination sphere). Our acquisition setup has five color cameras in a
"plus sign" arrangement with fifteen degrees between views, and a
motorized platform rotates the object about the vertical axis at 45◦
increments to provide views all around the object. We estimate a 3D
surface model for the object using the maps from all of these views
using a geometry reconstruction algorithm that leverages multi-
view stereo correspondence and the surface normal estimates from
the reflectance analysis. We first describe our multiview camera

109:6        •        B. Tunwattanapong et al.

ACM Transactions on Graphics, Vol. 32, No. 4, Article 109, Publication Date: July 2013



calibration procedure before describing the stereo reconstruction in
Section 5.1.

Camera calibration We employ a single-shot camera calibration
process using a 15cm diameter checkerboad cylinder (Fig. 9). The
cylinder has three colored dots to consistently identify the cylin-
der’s orientation in each view. The checker size provides a known
distance to establish scale. The checker corners are detected using
a corner detector [Harris and Stephens 1988] and refined to sub-
pixel coordinates. The pixel coordinates of the detected corners are
matched to the corresponding 3-D points on an ideal cylinder.

Figure 9: Top, left, front, right, and bottom views of the calibration
cylinder from the camera array.

We provide initial estimates of the camera poses and focal lengths
to a least squares minimization [Moré et al. 1984] of the distance
between the detected corner points and their 3D reprojections in
the five camera models. We first optimize only the cameras’ ex-
trinsic parameters, and then also optimize the cameras’ intrinsics
(including two terms of radial distortion), and finally also optimize
the 3D positions of the points on the cylinder so that it need not be
constructed with great precision. The solver converges in about one
minute yielding average point re-projection errors of 0.15 to 0.35
pixels.

5.1 Stereo Reconstruction

We solve for the object’s shape beginning with an initial approxi-
mate base mesh of the geometry obtained from either sparse stereo
correspondence and Poisson reconstruction (e.g. [Furukawa and
Ponce 2009]), shape-from-silhouettes, or simply a cylinder at the
approximate location of the object being scanned. We define a
displacement map over the vertices of this base mesh, refining its
estimated shape by displacing the base vertices along their normals.
We compute displacement values to minimize the following energy
function, defined over the set of base mesh vertices V and edges E :

E = ω(P,V ) + ∑
i∈V

ρ(pi, ni, vi)

+ ∑
i, j∈E

η(pi, p j, ni, n j) + ζ(pi, p j, ni, n j, vi, v j), (8)

where P = {pi}i∈V are the estimated vertex positions (with pi =

p0
i + din0

i ), p0
i and n0

i are the base mesh vertices and normals, re-
spectively, D = {di}i∈V are the displacement values, N = {ni}i∈V
are the estimated surface normals, V = {vi}i∈V are the estimated
sets of views in which each vertex is visible, ρ is a photoconsistency
term, ω is a visibility term, η is a surface normal consistency term,
and ζ is a photometric curvature term.

To simplify optimization, we take an iterative approach, first fixing
P and optimizing V and N, and then vice versa. For efficiency we
employ a multi-resolution scheme, where we vary the number of
iterations and the mesh vertex density. We perform 8 iterations at
1
8 vertex density,4 iterations at 1

4 vertex density,2 iterations at 1
2

vertex densityand 1 iteration at full vertex density.The result of each
pass initializes the next higher resolution pass using simple bilinear
upsampling. The entire reconstruction takes four minutes on an
8-core Intel Xeon E5620 system with hyperthreading enabled. In
detail, we initialize D = {0} and iterate the following three stages:

Optimizing V Each set vi indicates the views in which the vertex i
is visible. We define ω = 0 if every vi matches the true visibility for
vertex i given the mesh vertex positions P, and ∞ otherwise. With P

fixed, ω dominates all other terms and we simply compute visibility
from the current mesh estimate, omitting any vertices outside of the
visual hull defined by the data masks captured in Section 3. We say
that a vertex is outside the visual hull if the following holds:

∑k∈views wk;imk;i

∑k∈views wk;i
< 0.75, (9)

where wk;i = max(0, ng
i · lk;i), ng

i is a geometric surface normal
computed from the vertex positions neighboring pi, lk;i is the view
vector (ck − pi)/|ck − pi|, ck is the position of the camera for view
k, and mk;i is the data mask value for view k at projected position
pi. Besides the possibility of a vertex being occluded by other parts
of the mesh, we also consider back-facing vertices to be occluded.

Optimizing N With P fixed and V already computed, we optimize
N considering only η and ζ . (ρ also influences N, but less so.)

The surface normal consistency term η prefers the surface tangent
vector (pi − p j)/|pi − p j| to be perpendicular to the surface nor-
mals:

η = λ(ni · n j)
α

(
(pi − p j) · (ni + n j)

|pi − p j||ni + n j|

)2

. (10)

Normalizing the tangent vector keeps the solution consistent re-
gardless of mesh vertex density. λ is a global smoothing weight
(0.01 in our work) and α is an anisotropic smoothing weight mod-
ulation exponent (64 in our work) to reduce the smoothing weight
across high-curvature boundaries.

We replace (10) with the following approximate solution to yield a
least-squares linear problem:

η ≈ λ(np
i · n

p
j )

α 1
2 (|ni − ng

i |
2
+ |n j − ng

j |
2
), (11)

where np
i is the photometric normal estimate at vertex i:

np
i = ∑

k∈vi

wk;i(
1
10 ad

k;i max(0, nd
k;i · lk;i)nd

k;i + as
k;i max(0, ns

k;i · lk;i)ns
k;i),

(12)
normalized. This combines the diffuse normal estimate nd and the
specular normal estimate ns, each weighted by their respective albe-
dos ad and as, sampled over all visible views, and weighted based
on similarity to the view vector. The diffuse normal is weighted
one tenth as much as the specular normal, because it is typically
softened by scattering.

The diffuse and specular normals are derived from the measured
diffuse and specular directions as follows:

nd
k;i = βrd

k;i − pi, (13)

normalized, where β is the radius of the illumination sphere and rd
k;i

is the photometric diffuse direction (averaged over the three color
channels) for view k at projected position pi, and:

ns
k;i = (βrs

k;i − pi)/|βrs
k;i − pi|+ lk;i, (14)

normalized, where rs
k;i is the photometric specular direction (aver-

aged over the three color channels) for view k at projected position
pi. (Albedos are also averaged over the three color channels.)

The curvature term ζ prefers the spatial change in estimated surface
normal to agree with the change in photometric surface normal:

ζ =
λ(np

i · n
p
j )

α

|pi − p j|2
|(ni − n j)− (np

i − np
j )|

2
. (15)

As in η , normalizing by |pi − p j|2 keeps the solution consistent
regardless of mesh vertex density.

Acquiring Reflectance and Shape from Continuous Spherical Harmonic Illumination        •        109:7

ACM Transactions on Graphics, Vol. 32, No. 4, Article 109, Publication Date: July 2013



For any vertex that is outside the visual hull (as determined when
optimizing V ), we let η = 0 and ζ = ε|ni − n j|2 (with some small
ε) to provide a smooth interpolation between the other vertices.

The sum of η and ζ over edges (i, j) ∈ E is a sparse least-squares
linear problem in terms of the x, y and z components of the normals
N, which we solve by invoking Gaussian TRW-S message passing
[Kolmogorov 2006] three times (for x, y, and z). Finally, we nor-
malize the resulting surface normals to unit length.

Optimizing P With V and N fixed, we optimize P considering
only ρ and η (as ζ has only second-order effects on P).

We use the full form (10) of the surface normal term η , but we
replace |pi − p j| in the denominator with the values from the pre-
vious iteration to yield a least-squares linear system in terms of
displacement values D. This is an acceptable approximation in our
iterative scheme as the denominator changes slowly with respect to
displacement.

Our photoconsistency term ρ employs a novel blend of matching
costs between multiple sets of calibrated cameras, when the cali-
bration between sets is imprecise. In our case, we have 5 cameras
mounted ridigly to our structure, and thus the calibration between
these 5 cameras is precise. However, we have multiple copies of
these cameras with different scan object rotations, which are not
precise enough for stereo matching. Thus we compute matching
costs within sets, and compute a weighted average of the costs,
weighted by wk;i for the center camera k of each set.

The matching cost for each set is normalized cross correlation
(NCC) with a 3× 3 window aligned in space to the surface normal
ni. The NCC cost is a weighted average over the cameras (weighted
by wk;i) and scaled by the window variance in a primary view to
avoid undue influence from noisy low-intensity pixel values. The
primary view is the view within the set that is most facing ni.

We average the NCC cost over 10 data channels (diffuse albedo
RGB, mean specular albedo, mean diffuse normal XYZ, and mean
specular normal XYZ), and truncate the cost to 1 for robustness
to outliers. Vertex positions outside of the visual hull are given a
constant cost of 1.

The landscape of ρ is highly irregular, so we employ the data-
driven mean-shift scheme (DDMS) [Park et al. 2010], which fits
a smooth approximation to the cost function over a weighted region
of interest determined by the solution from the previous iteration
of the outer optimization loop. We fit a weighted quadratic cost
approximation over the region of interest based on discrete samples
at 0.1mm intervals, yielding a sparse least-squares linear system in
terms of the displacement values D.

We invoke Gaussian TRW-S message passing to compute D that
minimizes the sum of (approximate) ρ and η . While the original
DDMS scheme requires a double loop, we perform only the inner
Gaussian loop since it is already nested in our V,N,P outer loop.

Reflectance Blending After the geometry reconstruction is com-
plete, we blend the various channels of reflectance data using simi-
lar weights as the photometric normals, modulated by the similarity
to the final estimated normals:

c̄i =
∑k∈vi

wk;iwn
k;ick;i

∑k∈vi
wk;iwn

k;i
, (16)

where c̄i is the blended reflectance, ck;i is the reflectance data
for view k at projected position pi, and wn

k;i =
1

10 ad
k;i max(0, nd

k;i ·
lk;i)max(0, nd

k;i · ni)
2 + as

k;i max(0, ns
k;i · lk;i)max(0, ns

k;i · ni)
2.

6 Results

We now present some results of scanning objects with complex
varying reflectance using our technique. All viewpoints were
recorded under SH lighting up to fifth order, for 2× 36 photographs
per camera per view (though the 2 × 14 images from the 2nd and
4th orders are not used).

Figure 10 shows recovered maps for the shiny red plastic ball seen
in Fig. 2 under uniform illumination. The maps show good dif-
fuse/specular separation and the normals trace out the spherical
shape, except in areas of reflection occlusion near the bottom. The
roughness is low and consistent across the ball, but becomes es-
pecially low around the periphery presumably due to Fresnel gain,
which can be observed in the specular map.

(a) diffuse (b) specular (c) specular (d) roughness
normal

Figure 10: Estimated reflectance maps for a plastic ball.

Fig. 11 shows maps recovered for an arrangement of five slightly
bent anisotropic brushed metal petals at different angles. The maps
exhibit four different angles of anisotropy. The major-axis rough-
ness α1 is consistent for all five petals, and the minor-axis roughness
α2 is sharper overall but especially low for the vertical petal. We
believe this inconsistency is due to the LED arm’s higher resolution
and lack of blur around the equator compared to along the length
of the arm. The rendering and validation photograph, both under
point-source illumination, are still reasonably consistent, though
the tails of the specular lobes are wider in the photograph. This is
likely because a the tendency of the Ward model lobe to fall to zero
too quickly; a different reflectance model might better represent this
reflectance.

(a) diffuse (b) specular (c) specular normal

(d) anisotropic angle (e) roughness α1 (f) roughness α2

(g) rendering (h) photograph

Figure 11: Maps, rendering, and photo for brushed metal.

Fig. 1 shows the scanning process for a pair of sunglasses with
several materials of varying roughness on the frames and strongly
hued lenses with a mirror-like reflection. The reflectance maps cor-
rectly show very little diffuse reflection on the lenses and spatially-
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Figure 12: Two views of the 3D geometry for sunglasses (top),
with a validation rendering (lower middle) and photo (bottom) with
environmental illumination created by the LED arm.

varying roughness on the ear pieces. The glasses were scanned in
five poses for twenty-five viewpoints total. The diffuse and specular
albedo and diffuse and specular normals were used in the multiview
shape reconstruction shown in Fig. 12, providing merged maps in a
cylindrical texture space from all 25 views. The geometry success-
fully reconstructs both the diffuse ear pieces and the mirror-like
lenses in a single process. Fig. 12 also provides a ground truth
comparison of the rendered glasses to the real pair of glasses lit
by environmental illumination, and an animation of the glasses is
shown in the accompanying video.

Fig. 13 shows maps and geometry for a digital camera with sev-
eral different colors and roughnesses of metal and plastic and an
anisotropic brushed metal bezel around the lens. The maps success-
fully differentiate the materials and allow the renderings to give a
faithful impression of the original device.

Finally, Fig. 14 presents an error analysis for shape and reflectance
measurement for different types of spheres with the presented ac-
qusition setup. As can be seen, our technique is able to correctly
separate diffuse and specular reflectance for a mirror sphere, a red
metallic rough specular sphere, and a diffuse sphere. Fig. 14 also
presents plots of deviation in measured surface orientation and sur-
face geometry compared to an ideal sphere, as well as rendering
under point light illumination compared to validation photographs.
As can be seen, the reconstruction error is low near the equatorial
regions of the spheres that are unoccluded and well sampled by
the camera viewpoints and higher near the poles due to occulsions
(bottom) and insufficient views for stereo (top). The reconstruc-
tion error near the poles could be reduced with data aquisition from
additional viewpoints.

7 Discussion and Future Work

The principal advantage of our approach is the ability to estimate
BRDF parameters, including specular roughness and anisotropy,

(a) diffuse (b) specular

(c) specular normal (d) roughness

(e) rendering (f) photograph

Figure 13: Reflectance maps for a 3D model of a digital camera
and a rendering and photograph with environment lighting.

over a complete set of object surface normals with a relatively
small number of measurements. Recording the 0th, 1st, 3rd, and
5th bands of harmonics requires just 44 photographs (positive and
negative), which can be acquired in minutes from multiple view-
points. Since our LED arm creates images of incident illumination
with 400 × 105 pixel resolution, it would take thousands of pho-
tographs to record the reflectance information one direction at a
time, and hundreds of photographs using linear light source reflec-
tometry. We believe our technique is the first to record diffuse and
arbitrarily sharp specular SVBRDF behavior for 3D objects from a
small number of photographs.

The proposed technique suggests several avenues for improvement.
Currently, we estimate reflectance model parameters per pixel using
images captured from a single viewpoint, and then we merge the re-
flectance parameter maps per view into maps covering the entire 3D
object. This fails to make full use of the multiple viewpoints which
may be available for a given surface point for BRDF fitting. We
also do not consider self-shadowing or interreflections, assuming
that each surface point receives light from the entire hemisphere
around its surface normal. While the technique appears to de-
grade gracefully for small amounts of occlusion, reflective objects
with significant concavities will not reconstruct well with this ap-
proach. We also note that the range of observable BRDFs exceeds
the ones which can be expressed with a single diffuse/specular lobe
reflectance model. For more interesting materials which must be
modeled faithfully, using a more complex reflectance model fitted
to higher-order SH responses may be required.

8 Conclusion

We have presented a new technique for measuring the shape and
reflectance of objects with arbitrary diffuse and specular reflectance
properties at each surface point using spherical harmonic lighting
based on a new continuous spherical illumination device. Unlike
previous work which uses spherical illumination patterns, we avoid
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Mirrored Sphere Rough Specular Sphere Diffuse Sphere

Figure 14: Analysis of shape and reflectance measurement for different types of spheres. Left two columns: Mirrored Sphere. Middle two
columns: Rough Specular Red Sphere. Right two columns: Diffuse Sphere. Top row:(left) diffuse albedo (right) diffuse normal. Second
row:(left) specular albedo (right) specular reflection vector. Third row:(left) specular reflection vector deviation from ideal sphere (blue
= 0◦, yellow = 5◦, red ≥ 10◦) (right) specular roughness (dark is sharp specular, light is broad specular). Fourth row:(left) reconstructed
geometry (right) geometry deviation from ideal sphere (blue = 0mm, yellow = 0.25mm, red ≥ 0.5mm; sphere diameter ranges from 7cm to
8cm). Fifth row:(left) validation photograph (right) point light rendering.

the problems associated with polarization-based reflectance sepa-
ration and can measure the full range of specular materials from
entirely diffuse to perfectly sharp specular. Furthermore, we lever-
age both the diffuse and specular reflectance maps to form surface
correspondences in the geometry reconstruction process, allowing
even textureless specular surfaces such as the lenses of sunglasses
to be reconstructed accurately. While the technique is less appli-
cable to translucent materials and geometrically concave shapes,
it can reconstruct accurate models of a wide range of man-made
objects usually deemed to be failure cases for existing 3D scanning
and reflectance measurement approaches.
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