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Figure 1: Optimized Local Blendshape Mapping. (a) Retargeted result from the previous technique. (b) A visualization of
the pose sets that are used in (a). Each color represents a different pose set. (c) Retargeted result from the proposed technique.
(d) A visualization of the pose sets that are used in (c).

1 Concept

One of the popular methods for facial motion retargeting is
local blendshape mapping [Pighin and Lewis 2006], where
each local facial region is controlled by a tracked feature (for
example, a vertex in motion capture data). To map a target
motion input onto blendshapes, a pose set is chosen for each
facial region with minimal retargeting error. However, since
the best pose set for each region is chosen independently,
the solution likely has unorganized pose sets across the face
regions, as shown in Figure 1(b). Therefore, even though
every pose set matches the local features, the retargeting
result is not guaranteed to be spatially smooth. In addition,
previous methods ignored temporal coherence which is key
for jitter-free results.

In order to deal with these problems, we consider the facial
motion retargeting algorithm as an optimization problem
which takes the following criteria into consideration:

1. The number of poses that are (fully or partially) used
to represent the current shape should be minimal.

2. The pose sets of all tracked features should vary
smoothly across both spatial and temporal domains.

3. The retargeting error should be as small as possible.

2 Optimization

We formulate the criteria as the following cost function,
which we solve using belief propagation [Yedidia et al. 2003]:

min
T
F(T ) =

∑
i∈V

Ri(ti) + ktS(ti, t
′
i) + ks

∑
{i,j}∈E

S(ti, tj).

V and E are the set of vertices and edges respectively.
T = {ti|1 ≤ i ≤ nv} is a configuration of facial deforma-
tion; ti describes a pose set that is associated with a vertex
vi. kt and ks are weighting factor of temporal and spatial
smoothness. We assume that local deformation around a
vertex can be represented by a small number of blendshape
poses. Therefore, we define each pose set as a vector of three

pose indices ti = (pi0, p
i
1, p

i
2). Given a pose set, each local

patch can be approximated as a convex linear combination
of corresponding local patches ρ̂i(ti) from the three poses
in the set. We set pi0 be always neutral pose, and therefore

there are C
np−1
2 possible pose sets where np is the number

of blendshape poses. We then regularize the pose sets using
the following terms.

The retargeting error term: Ri is the sum of distances
between all local patch vertices of the target shape ρi around
vi and the reconstructed shape ρ̂i(ti) based on a pose set ti:

Ri(ti) =‖ ρi − ρ̂i(ti) ‖2

We compute the convex linear combination weights which
minimizes Ri by quadratic programming. We use the re-
sulting weights later on to blend the final result.

The smoothness terms: S(ti, t
′
i) describes the temporal

cost of assigning a pose set ti to vi. It is the Hamming
distance between the current pose set ti and the pose set
t′i computed in the previous frame. Similarly, the spatial
smoothness term S(ti, tj) is the Hamming distance between
the two pose sets ti and tj of adjacent features vi and vj .

3 Conclusion

Our technique is able to deliver better visual quality over
traditional local blendshape mapping methods. It computes
facial motion retargeting for blendshapes without any prior
knowledge of facial segmentation, which is required for most
of the blendshape retargeting methods. The number of
blendshape poses that are used for rendering a frame is re-
duced hence computing resources is saved.
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